
Lecture 57 [Problem solving]

Let us do some problems. So, here is the first problem. So, suppose I have a finite group 
G. So, let G be a finite group, and let K be a field, ok. So, recall this notion of the group 
ring or the group algebra that we talked about. So, the group ring is just; what is it? Well, 
it is all elements of the form some linear combination, some coefficients cg , with some basis 
elements 1g . You can think of it as a vector space over the field K, cg is coming from scalars
K ok.

K[G] = {
∑
g∈G

cg1g|cg ∈ K}

But the interesting thing as we saw is that this is a ring and it is got multiplication which
is well one way of describing it, is to say if I take these two basis vectors 1g and 1h , they
multiplied it give me the element 1gh, ok.

So, this is a ring. So, recall this whole business of opposites. So, recall what the opposite
of ring was. So, if I have a ring R not necessarily commutative, then Rop is a new ring. Well,
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what is it? Well, it is firstly, R as a set, in fact, its R as an abelian group as well the same
plus. So, I will say same plus as R but the multiplication alone is the opposite.

In other words, the new multiplication a � b = ba in Rop , is just defined as the product
ba in R ok. And we saw an example of the matrix ring which was isomorphic to its opposite
because there was this transpose map right, A going to AT transpose for A matrix. It sort
of changes the order of multiplication right. So, that gives you an isomorphism between the
matrix ring and it is opposite. So, the first problem now is to show that the same is true of
K[G], ok. So, prove that K[G] ∼= K[G]op is isomorphic to its opposite. So, this ring and its
opposite ring are isomorphic to each other. So, in this sense it shares this property with the
matrix ring, ok.

So, let us see what we would do as in the case of matrices the key point is to somehow try
and guess what the the map must be, something which you know interchanges the order of
um multiplication. And in the case of groups, so recall there is this important property of
groups that if I take the inverse of a product then that has the effect of changing the order,
right. This is true if I have two elements of the group G and, so that somehow the the clue,
we define the following map. So, here is the isomorphism. Let us define a map from the
group ring K[G] to itself.

As follows we take the basis element 1g to the basis element 1g−1 , ok for all g in G. Of
course, if I define it on the basis on a general element it is defined just as a linear combination
right. So, summation

∑
g∈G cg1g , therefore, what I mean is that the map does the following

it takes this to
∑

g∈G cg1g−1 , for all G ranging over the group G, ok.

Now, the claim is that this this map is a isomorphism between K[G] and K[G]op set, sorry.
So, what is on the other side is I am thinking of it as the ring K[G]op and I claim is that this
this map ψ is an isomorphism. So, let us check all the properties.
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Claim, ψ is a ring isomorphism. So, we need to check it preserves addition and multipli-
cation. So, addition is easy, ok. So, because in or the level of vector spaces it is just a vector
space, it is a linear transformation of vector spaces right. So, summation

∑
g∈G cg1g goes to∑

g∈G cg1g−1 , so ψ preserves addition it is easy to check. So, ψ(α+ β) = ψ(α) + ψ(β) for all

α, β coming from K[G]. So, I will leave this for you to check. All you have to use is this
equation star by star, ok because both α and β will have such expressions and you write
everything out.

The key point that needs checking is really this multiplication. So, if I take a product of
two elements, if I take ψ(αβ) = ψ(α)ψ(β) right. Well, I mean I wanted to be ψ(α)ψ(β) in
K[G]op I want this, right. So, let us just check it on the basis elements.

So, let us take α to be the special element 1g , β to be the element 1h , ok fix two elements
g and h from G. Let see whether this is at least true on um the basis elements. So, when I
compute ψ(αβ). So, first αβ becomes 1g into 1h which by definition is 1gh and therefore, ψ
acting on this element by definition was just 1(gh)−1 right. This is how ψ acts. Now, on the
other hand let us compute ψαψβ. Remembering that we are doing this this multiplication
inside K[G]op , so maybe I will just put that funny symbol for multiplication to remind us
that we are actually in the ring K[G]op . Let us go back for a second, so noticed that the
right hand side is K[G]op .

So, I take ψ(α)� ψ(β). What is this? Well, ψ(α) by definition is 1g and I need to do this
multiplication in K[G]op with 1h . So, what is sorry sorry ψ(α) = 1g−1 , ψ(β) = 1h−1 right
because α has 1g , ok.

But now remember this is this multiplication is in the opposite ring which means it is the
usual multiplication but in the opposite direction. So, this is because everything is taking
place in K[G]op , and now we are done, because that by definition. So, now, these two things
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are equal because let us check 1(gh)−1 by definition is 1(gh)−1 in the group is 1h−11g−1 is also
equal to 1h−1g−1 , ok.

Because this is now the multiplication in the ring R right. So, I have already done the
opposite. So, I interchange the order of the factors and then I do the usual multiplication
on the ring R ok. So, these two are of course, equal. So, we are done, ok. And of course,
third property you need checks that ψ of the the identity is the the identity, so recall that the
identity of of I mean the multiplicative identity of this ring is 1 sub the identity of the group,
ok. So, e is now the identity of the group, identity element, right, This is the multiplicative
identity. So, if e is the identity element of the group then 1 sub e is the multiplicative identity
of the ring of the ring K of G.

So, now let us compute ψ of 1 e by definition is 1 sub e −1, but of course e−1 = e , ok. So,
ψ(1e) = 1e So, notice that 1e is a multiplicative identity of K[G] as well as of K[G]op , um
because the identity is always a two sided identity right. So, whether you multiply it on the
left or the right it does not matter, it gives me the same, it it it serves the role of an identity,
ok. So, I hope that is clear.

So, what we have established is that this ring K[G]op, if G is a finite group the group ring
is actually isomorphic to its opposite, ok. And what does that mean? Well, as a consequence
of this thing we will probably see later that right modules for K[G]op and left modules of
K[G] are the same thing, ok.

So, in if your ring is K[G], then right K[G] modules and left K[G] modules are really the
same thing because you can use this isomorphism to take a you know a a left module over
K[G] and convert it into a right module over K[G]op , sorry; a left module over K[G] why
are this isomorphism becomes left module over K[G]op , but a left module over K[G]opis just
a right module over K[G], ok.

So, this in in essence the the conclusion or corollary of this isomorphism is that for K[G]
left and right modules are really equivalent notions. We do not need to worry about left
versus right, ok. Let us move on to problem 2, which is again let us define a notion for this
problem. So, define an R module M is said to be simple is said to be simple, ok or a simple
R module, if it has no sub modules, if the only sub modules of M sub modules of M are the
two obvious ones 0 and M itself, ok. So, these are the only two sub modules. Then we say
R is simple, ok, it has no other non-trivial sub modules. So, now, here is the question.

So, let us do the following. Let us take the ring to be C[X], C is the complex number,
C[X]. So, as you seen in the lectures is a a module over C[X] is the same as a vector space
over C. So, let me take a vector space. So, let V be a complex vector space and let T be a
linear operator on it, ok. And we have seen that this this data is the well what does this this
data enable you to do, it it makes V into a C[X] module, so using this V becomes a C[X]
module.

And what is the the additional thing? You really need to specify how x acts and what we
said is that the action of x on any vector is given by the the operator T that you fixed, right.
So, this was we call how we make I mean every C[X] module is of this form, ok. So, I fix a
C[X] module, ok.

In other words, I fix complex vector space and a linear operator and think of V as a C[X]
module. Prove that this is simple, prove that V is a simple C[X] module, if and only if the
dimension of V is 1, ok. So, need to prove that the only way in which V can be a simply
simple C[X] module is if its dimension is 1, ok. So, let us let us prove this. One direction is
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easy if the dimension is 1, then V is necessarily simple because recall what do sub modules
look like.

So, first observe the following C[X] sub modulus of V are the same thing as T invariant
sub spaces. So, these are just subspaces T invariant subspaces of V a i.e subspace W of V
which has the property that T maps into itself. This is what T variant subspace means, ok.
So, if the dimension of V is 1, so now, let us prove one direction.

So, let us prove this direction. If the dimension is 1, then of course, there are no subspaces
other than 0 and the whole, then there exists no subspaces, not even talking about some
modules here there are even no subspaces of V other than 0 and 1, 0 and the whole, ok. So,
of course, there cannot be any you know further sub module. Sub modules are subspaces
with an additional property. But there are no subspaces even. This is 0 and the whole, so
of course, there are no sub modules. So, there exists no sub space sub modules even. There
exists no C[X] sub modules of V other than (0) and V

So, this is trivial. It is the other direction that we need to work on. So, if it is simple, ok
you have given that it is a simple C[X] module, then you need to show that the dimension
has to be 1, ok, ok. Now, let us just analyze what a sub module is. So, you given it a simple
right which means that it has no C[X] sub modules other than 0 and the whole. What is the
sub module? It is just a T invariant sub space, right. So, what you have given is that this
subspace V sorry this um complex vector space V has no T invariant subspaces, right, that
is what is given other than 0 and the whole, ok.

But here is an interesting property of a complex vector space. So, I am thinking of
everything here as a finite dimensional complex vector space maybe I should have said that,
um let V be a finite dimensional. So, in this case I mean, ok, so let V be finite dimensional,
finite dimensional complex vector space, ok and I am given T let T : V → V be given, ok.
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So, T : V → V is a linear operator, V is a finite dimensional complex vector space, then
here is one thing I know it always has an eigenvector, ok. So, observe this just implies that T
always has an eigenvalue and an eigenvector, right. At least one eigenvector is is guaranteed
to exist. Now, so recall this fact from linear algebra. Now, what does that mean? Let us give
that eigenvector a name. Let us call it V So, V is some nonzero vector. When Tv = λv you
just get some multiple of V right, for some λ which is what we call an eigenvalue for some
λ ∈ C.

Now, observe that the fact that when T acts on V you get a multiple of V just means that
the span of v. So, look at the complex span of V So, I will just write it like this C V is T
invariant, it is a T invariant subspace. This is a T invariant subspace of V ok. But the given
hypothesis says that there are no T invariant subspaces other than 0 and the whole.

But we have clearly you know constructed at least one T invariant subspace here. This is
not 0. It is not the 0 space. So, the only thing it can be is is the whole. This implies that
Cv = V had better be the whole space, ok. Why? Since, V is given to be a simple C[X]
module. This is the given hypothesis, ok.

And now you have done because you have shown that V is just the span of a single vector
which means its dimension is exactly 1, ok. So, that that is the end of this proof, ok. Great
um. Here is an interesting follow up question; is the same true over R the ring of real
numbers, the field of real numbers, ok. So, suppose I took, um you know I took my ring to
be R[X] and I took a real vector space. So, remember I use the fact that there are it is a
complex vector space, so it has an eigenvalue and eigenvector and so on.

So, here is sort of follow up questions call it question problem 2 b, does this hold over the
real numbers. So, if V is a finite dimensional real vector space and T from V → V is some
linear operator that is given and we we think of V as an R[X] module, where x acts via the
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operator T So, then the question is V is simple, suppose V is simple, does it imply that the
dimension is 1? Ok.

So, observe the same prove does not work anymore because um I do not necessarily have
you know eigenvalues anymore I do not have real eigenvalues anymore. So, which means that
I cannot necessarily produce an eigenvector and therefore, the same proof will not work. But
the question is is the result too nevertheless can you somehow give a different proof of this
fact.

Now, it turns out the result is not true in this case, ok. So, here is the the interesting
observation. No, this is not true. The simple module need not have dimension one if you are
over the real numbers. And what is a what is a very easy example? Well, we we can just
take V to be a two-dimensional space, ok.

So, I just look at this two-dimensional real vector space R 2. And I take this linear operator
T : V → V to be, well I can I can just describe it geometrically let us take T to be the the
map which is rotation through 90 degree angle, through π

2
angle, say an anticlockwise rotation

by a 90 degree angle, ok.
So, what is it do? It rotates the plane by 90 degree. So, which means for example, the

x axis here maps to the y axis under the action of this operator T ok and so on. So, any
any other line that you pick. So, if you took this line here for example, say at 45 degrees
it will get rotated to the line which is at 135 degrees and so on, ok. Now, this is a linear
operator, ok as it is easy to check. And here is the interesting fact, this linear operator has
no T invariant subspaces, ok. This operator T has no invariant subspaces other than 0 and
the whole, ok.

Why is this? Because well the total dimension is 2, this is a 0-dimensional sub space, this
is the two-dimensional sub space. What else can it have? If at all it had invariant subspace
it must be a one-dimensional space right.
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So, the question is can T have a one-dimensional invariant subspace. What is the one-
dimensional subspace? It is just a line, ok. So, the question is if can I just draw a line
somewhere and say, ok, so let us say this one here I draw a line now and say; let us just use
some other color. So, this is a line, can this line be T invariant? Well, what does T do to
this line? It does not map this line back to itself, it maps it to the line which is you know at
a 90 degree angle to this one, ok.

So, just from the geometrical definition of T it is clear that it cannot map any line to itself,
it has to move every line and map it to a different line, ok. So, here is a counterexample
if you are over the real numbers. Even though this space has dimension 2, this operator is
such that you know V is still a simple module over Rx , ok. ah Let us move on to the next
problem. This is problem 3 which is the following. Again about simple modules if you wish.

So, first little definition. So, suppose I have M which is an R module, and if I take an
element of Mx in M then we call, so Rx by that I mean the space, what I get by multiplying
x by all the scalars in R ok. This guy is called the cyclic sub module. So, this is by the
way a sub module is called the cyclic sub module generated by x. It is just the sub module
generated by x in some sense. So, if it is a singly generated sub module we say, we usually
call it cyclic. It is a cyclic sub module generated by x, ok.

Now, here is the problem prove the following prove that M is a simple R module. Recall,
from the previous problem, what that meant M is simple if and only if every cyclic sub
module equals the whole module. So, by the way you should check that this is a sub module.
It is a it is a easy verification. But the claim is if M is simple then every cyclic sub module
has to be equal to the whole. And this an if and only if that is where the interest lies. So, let
us prove this. ah One direction again it is very easy. If M is simple then recall that meant
that it has no sub modules other than 0 and the whole, and here is a here is a sub module,
ok. So, so I should say this is for x not 0, for all x in M other than 0, right. Of course, if I
take x equal to 0 it just generates the 0 sub module.

So, if M is simple then Rx is a sub module and Rx is not 0 because I have chosen x to be
not 0, therefore, Rx had better equal the whole because there are no other sub modules, ok.
So, this is by simplicity of M by simplicity of N

Now, it is the converse that really needs work here, if every cyclic sub module equals the
whole, why is it true that M must be simple, ok. So, let us prove that M is simple. So, what
does that means? Suppose not; so, why do not we we proceed by contradiction. So, suppose
M is not simple suppose M is not simple; that means; what does that imply? That means,
I can find the sub module. There exists a sub module N um of M such that N is neither 0
nor the whole. So, it is sort of strictly properly between these two ends.

So, there exist a sub module N which is neither 0 nor N From this I need to get a
contradiction somehow, ok. So, let us do the following. So, since N is not 0, let us pick an
pick an element a nonzero element from N So, pick x not 0 x in N ok. So, take a nonzero
element of N and consider the cyclic sub module generated by that nonzero element look at
Rx , ok, consider Rx .

Now, what do we know? Every cyclic sub module supposed to be the whole module M
but since x comes from N and N is a sub module, right. What does it mean? If you multiply
x, so x is from N and I multiply x by any scalar the answer is again in N because N is a
sub module, ok. So, observe if I take the cyclic sub module generated by Rx , because x is
in N and N is a sub module Rx is a sub of N ok. But N is N is not the whole space N is a
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strict subset of N So, this means in particular that this cyclic sub module Rx cannot equal
M and that is a contradiction, ok. And that contradiction proves what we wanted.
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