
Lecture 54 [Modules: More Examples]

Today, we will talk about ah more examples of Modules. So, far we have seen modules 
over the ring z it is a abelian groups, modules over the ring K x, which are basically vector 
spaces together with a linear operator. Now, ah let me consider some non commutative rings 
this time.

And, when I say module of course, I will always mean left module, but today we will also 
talk about some right modules ok. So, let us just take example 1, which is the ring example 
1 is the ring R = Mn(K) of n × n matrices with entries in K . So, this is n × n matrices 
with entries in the field K . So, here K is a field, entries in K.

So, let me fix a field and of course, if n ≥ 2 this is not a commutative ring. If, n is 1 this 
is just the field K itself ok. And, where modules over K are just vector spaces so, I want 
to look at the same situation for n greater than or equal to 2. And, let me give you some 
examples of modules . So, here is ah V is the set of all column vectors of size n × 1 .
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So, let us take the set of all column vectors of size n×1 and here ah this is still with entries
in K ok. So, this is with ah entries in K, the base field ok. So, uh what are column vectors?
I I mean they are just matrices of size n × n ok. Now, this is uh uh well this is firstly, it is
an abelian group. So, I want to claim, that I can make this into a module over the ring R
ok as follows .

So, observe already I have ah addition of vectors addition of column vectors. So, this is
an abelian group definitely, but what I want to do is to define my matrix multiplication .
So, let me take a matrix A ∈Mn(K) in my ring R, and I should take an element v from my
module ok so, I will take a element v ∈ V . It is a column vector, now I have to tell you how
to define the scalar multiplication of A with the element V of the module ok. Now, there is
only one obvious thing we can do here A being an n×n matrix . So, A looks like this; this is
some n× n matrix and v is an n× 1 matrix or a column vector right. So, the most obvious
thing you can do is to just multiply the two of them ok.

So, Av is just defined so, this is the definition here is the definition. Define A be to be just
the product of the n× n matrix A with the n× 1 matrix V ok. So, usual matrix product if
you wish. Now, ah the result is of course, an n× 1 matrix again or a column vector ok . So,
what is this give you so, let us just denote it as Av the usual matrix product. The answer
of course, is again a column vector of size n× 1 . So, ah A matrix of size n× 1 ; so, that is
again an element of v. So, this is the definition of of the scalar multiplication and it is easy
to check all the axioms. So, for example, what are the axioms? Ah. So, I claim that this
makes V into ah R module.

So, what were the axioms there was distributivity which says if I take A·(v+w) = A·v+A·w
or if I change A, look at (A+ B) · v = A · v + B · v . Now, observe both these are just they
follow from the usual distributivity property for matrix multiplication ok. So, these are both
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ok, because they come from the distributive property of matrix multiplication. Now, axiom
iii was if I take a product of 2 matrices A and B and I scalar multiplied with v it should give
me the answer of repeated A acting on B acting on v. But, again this is just the associativity
of matrix multiplication . So, this just comes from the associativity of matrix multiplication
.

Because, both sides are just equal to you know both both sides are just the product take
the product of the 3 matrices AB and v ok. And, finally, the identity so, the the matrix
ring m n are has the identity matrix, In×n . And, the identity matrix acting on a vector v is
by definition they are they are usual matrix product, but of course, if you multiply identity
matrix with anything you get back to it ok .

So, all the axioms are satisfied. So, here is an example of a left module. So, this is now
the space V of n× 1 column vectors is a left module over the ring Mn ah Mn of K ok. And,
in fact, we can just tweak this example just a little bit to construct a right module. So, here
is an exercise for you. So, instead of V let us take V ′ to be the set of all row vectors of size
n ok, row vectors of size n by which I mean ah matrices of size 1 cross n ok . So, I mean I
should either call them row vectors of size n or matrices of size 1 cross n so, so anyway. So,
this is so, you know what these look like a typical element is a row vector like this. That is a
typical element of V ′ and now ah the claim is that V ′ can be made into a right module over
this ring R of matrices yeah.

How? Via the following operation I take a matrix A and I should tell you how to do this
scalar multiplication, well the definition is this just look at ah the the row vector v . So, now
v is a 1× n matrix and I multiply it on the right by the matrix A, which is an n×m . So,
this is V and this is my matrix A ok.

I multiply it on the right by A. And, the answer is again the usual I mean by this I just
mean the usual matrix multiplication of these 2 of V with A; and, the answer again is a row
vector remember 1×n into n×n , the answer will again be A1×n matrix right, it will again
be a row ok . Now, this is a right module not a left module, because if we take a product
of 2 matrices AB and I try to act it upon B according to this definition. Then, this is just
the ah the matrix product v into A into B, but that is just the same as what you would get
if you first multiplied v with A and then multiplied the answer with B . So, in other words
this is what you would get if you took B you first acted on it by A or scalar multiplied it by
A and then scalar multiplied it by v ok .

So, that is exactly the definition of a right module . So, row vectors with this ah definition
form a right module, column vectors with the usual matrix multiplication form a left module
ok. So, ah time for another example. So, let us take example 2. Now, I will take the the ring
R to be a group ring. So, recall from the lectures on rings, that the group ring of a finite
group. So, let us take G to be a finite group. It is group ring is defined as follows it is the
um well it is it is firstly, it is a vector space . So, I need a field as well. So, K is a field. So,
R which is called the group ring of the group G over the field K right K[G] . So, this is the
group ring of the group G over the field K was defined as follows ah. Firstly, it is a vector
space. So, how do you define R, R is a vector space, it is a vector space over the field K, it
is a K vector space .

So, you start with the K vector space with basis given by some elements . So, we were
ah labeling them as {1g|g ∈ G}. So, I take these finitely many basis elements 1g as g runs
over so this is the set, this is the basis ok . And, ah of course, that is just in some sense I
only told you how to do addition now. So, what is the addition here? If I take so, what is a
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typical element firstly? A typical element of R looks like summation
∑

g∈G ag1g right; it is
a linear combination of the basis. So, this is a typical element of R. So, let us call it g in G
and to this if we add another element

∑
g∈G bg1g in G . Because, the answer is just because

these form a basis, I can just add them like this 1g, g ∈ G ok . So, that is the operation
of addition in this group ring and recall multiplication can be defined as follows . Ah it is
enough to sort of define it on the basis elements. If I take the the product of the element 1g
with the element 1h just gives me the element ah 1gh corresponding to the product gh .

So, this was the definition of the multiplication of course, to define it in full you will also
have to say what how you multiply 2 linear combinations . So, I take ah linear combination
like this, and another linear combination like this, h ∈ G, g ∈ G . Now, I I I sort of just
use this rule above and and compute it by linearly in other words I just expand it out in full
sum over all g in G, sum over all

∑
g∈G

∑
h∈G = agbh1gh . So, this is so, I am just recalling

the definition from the the previous lectures on rings . So, this is how the group algebra or
the group ring over K, it is defined ok. And as was checked there it is it is a ring under this
these operations . So, let us do one particular example here. Let us take a simple example
of a group ring. Let us take the group S3 , which is the symmetric group on 3 letters . So,
in ah 1 line notation recall the elements look like ah this is {123, 132, 213, 231, 312, 321} ok,
these are just the elements written in 1 line notation .

So, example if I pick ah say if I call this as my element σ = 231 . So, let σ denote the 1 line
notation permutation 231, this means that it is a function . So, permutations are functions
from the set 1 2 3 to the set 1 2 3 bijective functions, σ maps 1 → 2, it is a first entry σ
maps 2 → 3 and 3 → 1 so, 231 . So, this is what σ does? ok. So, σ is a function from the
set 1 2 3 to itself ok .

So, that was our definition ah of the symmetric group and and ah permutations. Now, let
us take the ring R to be the ring the group ring of S3 over this field K ok. So, K[S3] is our
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ring R . So, recall what does this mean, it means I have a basis uh as a vector space, this is
a 6 dimensional vector space it is got basis indexed by you know I put 1123, 1132, 1213 etcetera
ok .

Each each element of S3 to each element that corresponds a basis of this space, and the
multiplication is the key thing here it is 1g into 1h multiplies in this particular way ok. So,
let us construct a left module for for this ring R ok. So, I am going to construct the following
left module. So, let me tell you what this space M is going to be, M is just a space K3 ok; by
which I mean, ah the the 3 dimensional vector space over K, which I will think of as column
vectors of size 3 .

So, let us think of K3 to be the following set, consisting of all column vectors X1X2X3,
where xi s are all elements of K ok. So, this is a 3 dimensional vector space if you wish over
over K, over the field K. Now, I claim that this set M can be made into an R module ok .
So, I have to define the ah the R the scalar multiplication .

Observe M already has an addition right; this is just all column vectors it is in fact, a
vector space over K, I certainly has an addition ok under that addition it is already an abelian
group . So, that part is ok it is only the scalar multiplication that we have to define. So, let
us define it in this in the following manner . So, we say that so, we now define . So, I if I
so, I have to tell you given an element X1X2X3 of my ah module M of my space M, I have
to tell you how to scalar multiply it with every element of my ring R ok .

Now, ah let me tell you for a start how to scalar multiply it with a particular basis element
of my ring R. This this is special element 1g for all g . So, let me take some σ ok. So, let
me take σ to be some element of my group S3. For this element σ I will now tell you how to
scalar multiply the vector X1X2X3 by the ring element 1σ ok .

So, what is this? . So, here is the definition this is defined as follows it is x. So, it it
permutes the Xs just like whatever σ would do ok. So, this is Xσ−1(1) and ah we will just



6

see why the inverses are required in a second. So, I put Xσ−1(2) Xσ−1(3) ok. So, this is my
ah definition each vector X1X2X3 column vector is mapped to the vector Xσ−1(1), Xσ−1(2),
Xσ−1(3) .

So, let us let us do an example, ah this is for any σ . So, maybe I should yeah so, this is
for all σ ∈ S3 . Let us take that particular σ that we we looked at in the ah the previous one
take this example ok. So, if I take this particular σ = 231 example, if σ = 231 what will 1231,
do when it acts on X1X2X3. Well the answer is it will map it according to this formula. So,
recall what was σ doing σ was mapping ah 123→ 231 ok .

So, in particular; that means, if I take the inverse of σ , the inverse map, then σ−1 will
map 1→ 3 ok . So, let us write that down what does σ−1 do? σ−1 maps 1→ 3 ok. So, let us
go back up again σ−1(2) is upstairs here is 1 σ−1(2) = 1 and σ−1 of what is left σ−1(3) = 2
ok. So, that is what it does? . So, let us just see what; that means. So, this is X3 on top X1

X2 ok. So, the the element 1231 acting on X1X2X3 gives me X3X1X2 ok . So, you see what
it has done, it has taken X1 the element X1 here, which is which occurs in the first place and
it has moved that X1 from the first place to the second place ok . So, remember that is that
is how σ acts right.

The action of σ let us write σ here σ maps the number 1 → 2, maps the number 2 → 3,
and 3 → 1 right . So, now, this this action here you should remember it as as follows it
maps it takes the element in the first position and moves it to the second position ok. Now,
σ(2) = 3 . So, the X2 which is in the second position is now moved to the third position.
And, 3 which is in the third position X3 gets moved to the first position ok .

So, this is what ah this this particular element 1231 does more generally if I take 1σ acting
on X1X2X3 it will act in the same way here. So, I need to put the inverses here for a reason
we we will see soon, it is to make it a left module rather than a right module. But, the
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basic idea is that it permutes these these 3 components X1X2X3 sort of the same way that
σ permutes the numbers 1 2 1 3 ok .

So, I have defined this this action of course, I have only defined it on the basis elements
ah it is sort of clear what I need to do in general. So, more generally I need to complete
the definition by saying, if I have a linear combination of these guys

∑
σ∈GCσ1σ if we wish,

σ running over G, then that acts on a vector X1X2X3 I just expand this summation here
X1X2X3 . The answer is just summation σ , Cσ and 1σ acting on this vector which I know
is σ−1(1), σ−1(2), σ−1(3) ok. So, I I complete the definition in this way, this is the full full
fledged definition .

So, this is for Cσ’s . So, what are the Cσ’s, here Cσ’s are just ah elements of K. So,
they are just for all constants for all elements Cσ ∈ K ok and for all X1X2X3 also in K. So,
this is also for all X1X2X3 running over K ok. So, this is the full full definition of the the
scalar multiplication . So, now, we need to check that this is a this is in fact, a module ok,
which means I need to check all the axioms again. So, let us check that claim this makes M
into a left R module ok. And, let us prove this this just involves checking all the axioms ah
and axioms i and ii as usual are rather easy. So, I will leave that for you to check just the
distributivity properties .

So, let me check axioms 3 and 4. So, axiom 3 is important, that is the one which ensures
it is a left module, not a right module. So, let us compute. So, suppose i i so, what do we
need to check for axiom iii, I need to check that if I take say α acting on sorry the product
α β acting on a vector should give me the same answer, as ah successive actions α β acting
on an element X1X2X3.

Should give me the same answer as α acting on β acting on the element X1X2X3 and this
should be true for all α β coming from a ring. The ring here remember is the group ring of
S3 and for all elements X1X2X3 coming from my module M ok. Now, in this case of course,
I should in general pick α β to be any elements of ks 3 meaning any linear combinations.
So, I should pick for example, α to be something of this kind β again to be some such linear



8

combination, but ah it is sort of enough to check it on on just the basis elements for a start
and then you know.

If it works nicely there then taking sums will usually work out nicely. So, let us just so,
let me just check it on the basis elements and allow you to check the the entire ah linear
combination. So, let me just take this simple case. So, I will just do it in this simple case,
that α = 1σ ok. It is just a single basis element β = 1τ ok, where what are σ and τ there are
some particular elements of S3 ok.

So, let me check ah so, I will just do this case I will do this case and leave the full summation
to you. So, let us compute the left hand side ok. So, what is the left hand side here? It is
this this guy so, let us compute this the left hand side, it turns out to be α β times this and
what is α β here it is 1σ 1τ that is the product α β acting on this vector X1X2X3 ok .

But, 1σ 1τ by definition is 1στ acting on this vector X1X2X3. And, that by our definition
is just you have to change the Xs like this Xστ−1(1), Xστ−1(2), the last is X ah ok maybe I
should just write it (Refer Time: 23:46) . So, let me just write it on the next page. So, this
is the same as the vector Xστ−1(1), Xστ−1(2), Xστ−1(3) . So, that is my column vector. Now,
let us compute so that is 1 1 answer. So, we have found 1 answer. So, let us do the right
hand side as well. So, what is the right hand side in this case?

So, recall the right hand side is 1σ followed by 1τ acting on X1X2X3 ok. So, we have to do
this little more carefully. So, let me let me do it slowly if I take 1τ first. So, let me compute
what is on the inside I take 1τ and I act on X1X2X3 .

Now, when I do that by definition this is the vector Xτ−1(1), Xτ−1(2), Xτ−1(3) ok. So,
that gives me some some new element. So, let me call this element something let me give it
a name, let me call it y1y2y3 . So, the 3 numbers the 3 components are y1y2y3. So, this is
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just definition calling like this ok. Now, let us act 1σ further on this, now I take 1σ and I try
to act on this this element here ok .

So, what is that? That is just 1σ acting on so, it is since I have called it y1y2y3 for short
let me just use that notation 1 σ acting on y1y2y3, which by definition is it moves whatever
in the first component . So, it is just y τ inverse 1, y τ inverse 2, y τ inverse 3 . So, that is
my ah 1 σ acting on 1 τ acting on X1X2X3 ok.

Now, let us unravel the last step let us look at what we got as the answer . So, let us look
at this answer here and see what that becomes. Now, remember y τ inverse 1 . So, what is
y of anything ah y i is same as Xτ inverse of i ok. So, when I say y of τ inverse 1 ah.

So, oh sorry I I made these τs instead of σ s . So, sorry recall I am I am hitting it with a
1σ . So, sorry these should all be σ s instead of τs . So, let us make that change. So, this
should be actually yσ−1(1) , yσ−1(2), yσ−1(3). Now, ah what is y of of any any index is just from
here I observe it is y uh it is Xτ inverse of that index ok. So, so let us let me just ah remark,
let us observe that, if I want to compute yi , I just have to take Xτ−1(i) .

So, this is the bit that 1 has to be little careful about Xτ inverse i Xτ inverse i ok. So, let
us this. So, this is for i equals 1 2 and 3 ok. So, let us plug that in into the next ah ah page.
So, I conclude that if I take 1σ and then act it on 1τ on X1X2X3. The answer is ah X, let
us go back up, it is yσ−1(1), but yσ−1(1) is Xτ−1σ−1(1) ok .

So, it is Xτ−1 acting on σ−1(1), same thing Xτ−1 acting on σ−1(2), and this becomes Xτ−1

acting on σ−1(3) ok. So, what does that mean finally, I conclude that, this is the same as X
.

So, τ−1σ−1 remember it is just στ−1 the whole inverse, Xστ−1 the whole inverse and Xστ
the whole inverse 3 ok. So, that is the same as what we got on the left hand side ok . So,
this proves that axiom 3 holds in other words it is a it is a left module ah axiom 4 is is again
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easy. So, let me leave axiom ah iv as an exercise . So, you just go to check what the identity
element is recall the identity element of ah the this ring R is just the element which is called
1I the identity ok. So, exercise is use the fact that this is the multiplicative identity of this
ring ok .

So, the key point is that this this inverse is the is the little twist here that, ah that is
required to make it work out right. And, little exercise again, if you did not put an inverse
there exercise, if we define the action as follows 1σ acting on X1X2X3 to be the same formula
without inverses Xσ(1), Xσ(2), and Xσ(3) . If you did this then what happens well then M
becomes a right module ok; so, that is the that is the interesting bit here ok, excellent and
my final example for now is ah sort of a general one. So, this is if uh let R be any ring, let
R be any ring, then R actually is a is a left module over itself in other words i i e .

So, what do I mean I I can take my module to be my ring itself to be my underlying
set of the ring ah with what addition do I take? Well I take the same addition of the ring
itself, with ah + being the ring addition . So, I I just think of the ring under addition as
an abelian group ok. So, that is my underlying abelian group of M . And, I have to now
tell you what scalar multiplication is and scalar multiplication is defined as follows . Well I
just do left multiplication and scalar multiplication is defined via the following, if I take an
element α ∈ R and if I take an element X ∈ M . So, remember M is actually R again then
I define the scalar multiplication α ·X to be just the product of these two elements. So, this
is now the product in the ring R just the usual multiplication, observe both αX are actually
elements of R .

So, I am just using two different notations for R to say you know I think of one as being
the sort of the scalars and the other as being the ah the module itself . So, that is the first
ah first thing one can do we can think of a ring as left module over itself. And, again just
like we did in the two previous examples you can change left to right in the following way.
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So, this is a left module, but I can as well define an alternate right module structure as
follows . So, I can change left to right, if I do the following, I define this operation α � x
differently. I now define α � x ah it becomes a right module. So, R is a right module over
itself via well the same addition, but multiplication is now multiplication on the right. So,
this is for all for all αx in R which is same as M ok. So, under the right multiplication
operation, if I take the scalar α and I multiply it on the right of x. Then, that gives R the
structure of a right module ok. And, if I multiply the scalar α on the left, it gives me the
structure of a left module .

So, R is in fact, a module both the left and the right module of itself ok. So, we have seen
in some sense 3 examples of modules which are well 3 examples of left and 3 examples of right
modules. A remark on notation so, we keep talking about left and right modules. Now, ah
recall when we say that something is a right module right module over a ring R just means
that ah I have elements α for all α ∈ R. So, M is a right R module just means that ah I
have a notion of so, there is a scalar multiplication there is a notion of scalar multiplication,
of scalar multiplication. And, we denote this scalar multiplication by; so our notation for the
scalar multiplication is like this right.

So, we all we always say, let us say X � α is ah the scalar multiplication and it satisfies
the the well the other axioms are the same this axiom iii dash that we talked about, that is
the key here, which is if I multiply α and β and then I scalar multiply it with X. Then the
answer is β, scalar multiplying α, scalar multiplying X right that is the order .

Now, ah looking especially at the examples that we have done this time the the 3 examples,
especially the last one, where R acts on itself on the right by right multiplication in some
sense. Ah. An alternate notation so, here is a more conventional and alternate notation for
this scalar multiplication. So, instead of so, if you have a right module then we usually write
the scalar on the right of the vector ok .

So, we write more conventionally usually in the following order. So, this is only for right
modules. So, if ah M is a right R module, then the scalar multiplication, the scalar mul-
tiplication by α ok, scalar multiplication of X � α if you wish, scalar multiplication of the
element X ∈M by the scalar α ∈ R is denoted as follows. We say X scalar multiplication α
well α is thought of as being a scalar that multiplies on the right ok . Now, ah why is this
it is it is slightly strange, if you, if you have used to see in scalars you know thought of as
being multiplied on the left.

Now, ah why is this alternate notation somewhat better, because it captures this axiom
iii prime notationally in a more pleasing way, which is that X � (αβ) is well what does this
say . It says, if you want to scalar multiply X � (αβ) you must first multiply by the scalar
α, then by the scalar β.

So, this is in in our new notation it just becomes this X. First you scalar multiplied by
α, then by β . So, in some sense it flows in the same order ok . So, you will usually see
right modules written in this way, where the scalars are thought of as sort of acting from the
right ok . But, of course, I mean it is it is it is just a question of notation there is nothing
fundamentally ah new happening here. You could if you choose just choose to do it the way
we did it that the scalars act on the left , but the composition rule is is sort of switched that
when α β, tries to act on X.
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You must first act α then β ok, or you could choose to just use this usual notational
convention, where the scalars are thought of as somehow coming from the right. And, in
which case it is easier to remember the the order in which it flows ok .
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