
ALGEBRA I

1. Lecture 48: Quotient rings

Let us talk about Quotients of Rings by ideals . The easier case is
that of a commutative ring , let us begin with that . Say, suppose R is
a commutative ring , ok. Remember when R is a ring , then R comma
+ is an abelian group , ok. And what you can do is, you can take the
quotient of R by an ideal . So, let I be an ideal of R . So, what is an ideal
? It is a normal subgroup of R under addition; but also it has a property
that, if you take an element of I and multiplied by any element of the
ring, the product is again an element of I. The quotient ring is defined
as quotient group R/I with product (x + I)(y + I) = xy + I. Check
that this is a well-defined product and associativity of the product,
that there is a unit, and that it distributes over addition. The unit of
the ring R/I is just the coset of the unit in R. The only issue is when
I is actually equal to R; when I is equal to R, then R/I is trivial and
then this ring cannot have a unit.

Recall the definition of a prime ideal: an ideal I of R is said to be
a prime ideal if xy ∈ I =⇒ x ∈ I or y ∈ I. Here is a result about
quotients by prime ideals:

Theorem 1.1. R/I is an integral domain , if and only if I is a prime
ideal.

Proof. Suppose I is a prime ideal. Let us take (x + I)(y + I) : if this
is equal to 0 in R/I, that means it is equal to just I itself . Then, that
means that , in fact this is an if and only if this is happens if and only
if xy ∈ I. This implies that x belongs to I or y belongs to I, which
implies that x + I is 0 in R/I or y + I is 0 in R/I , ok. So, if I is a
prime ideal, then R/I is an integral domain.

Conversely, if R/I is an integral domain , we just reverse this argu-
ment , suppose we have xy ∈ I ; this this implies that (x+I)(y+I) = 0.
Since, R/I is in integral domain, this implies that x + I = 0 in R/I or
y + I = 0 in R/I ; but that is the same as saying that x belongs to I
or y belongs to I . �

An ideal I in R is called a maximal ideal if whenever J is an ideal
which contains I then either J is R or J is I.

Theorem 1.2. I is a maximal ideal if and only if R/I is a field.
1

Algebra - I
Prof. S. Viswanath & Prof. Amritanshu Prasad

Department of Mathematics
Indian Institute of Technology, Madras      



ALGEBRA I 2

Proof. Suppose, I is a maximal ideal. Take an element x + I in R/I .
So, x + I is not equal to 0 in R/I means that x does not belong to I ,
right. So, this is an if and only if, so if x is not in I . So, now consider
the ideal J equals all elements of the form rx + a , where r belongs
to R and a belongs to I ; it is not difficult to see that J is again an
ideal and that J contains I and it is contained in R . But notice that J
also contains the element x, but x is not in I; so that means J properly
contains I . So, this implies that J is equal to R. In particular , the unit
of R belongs to J . So, this means that R/I is a field ; every non-zero
element of R/I has a multiplicative inverse . Conversely, suppose R/I
is a field . I want to show that , every ideal of R that contains J is
either I or R . So, suppose J is an ideal that properly contains I and
is contained in R ; I want to show that J is actually equal to R . But,
then what you do is, you look at the image of J in R/I. So, what I am
saying is, you look at J + I . So, this is the set of all elements of the
form j + I , where j belongs to J ; this is a subset of R/I. And in fact,
it turns out that J + I is an ideal in R/I . And in fact, it is a non-zero
ideal . Why ? Because J properly contains I. So, there is an element of
J which is not in I. So, there is at least one non-zero element in J + I,
a non-zero element of R/I in J +I . But in a field, the only non-zero
ideal is the field itself, this is something you can check ; this means
that J + I is equal to R/I , which implies that J is equal to R . �

Corollary 1.3. Every maximal ideal is a prime ideal.

The reason for this is every field is an integral domain . Let us look
at some examples of ideals which are prime, but not maximal . Now, if
you look at the integers ; the only ideal that is prime, but not maximal
is (0). For prime number p , the ideal generated by p is a prime ideal
and a maximal ideal . The only ideal larger than p is Z itself , and this
corresponds to the fact that Z mod p Z is a field , ok. So, it turns out
that in the integers, most ideals are prime ideals .

But let us look at polynomial ring in two variables . So, let us take
say R = C[x, y] ; then here is an example of an ideal let I be the
ideal generated by x and y . This is a maximal ideal . It consists of
polynomials with in two variables with trivial constant term. So, there
is no constant term and that is the only condition . And, what you
can show is that , R/I is isomorphic to the complex numbers . How
do you construct this isomorphism? Given a polynomial f , you map
it to f(0, 0) that is a complex number . And, every polynomial that
is in this ideal will get mapped to 0 and you can show that this is an
isomorphism. So, this is a maximal ideal ; because the quotient is the
field of complex numbers , ok. But in C[x, y] you just take the ideal
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generated by x , this is a prime ideal; but this is not a field. So, it
is not a maximal ideal . In fact, this ideal x is contained in the ideal
(x, y) , which is contained in C[x, y] . When we take quotients in non-
commutative rings, we need to be a little more careful. So, let us try
doing the quotient process which we did for commutative rings in the
case of a non-commutative ring and see what goes wrong . So, now
suppose R is possibly non-commutative ring and let us say I is a left
ideal in R . So, that would mean that, I is a sub group of R + , and
for every x in I and r in R , r x again belongs to I . Now, I want to
define a ring structure on the quotient , additive quotient group R/I .
So, let us try to define a ring structure on R/I . So, we do this x + I
into y + I is equal to x y + I . We need to check if this is well defined,
ok. So, is this well-defined ? So, as before we just look at x + a + I
times x + b + I and try to see if this is equal to x y + I ? But as we
saw this is x y + a y + x b. I is a left ideal, so that means that, since
b is in I, ab ∈ I ; since b is in I, x b is in I , but we do not know that
a y is in I. So, if a y is not in I, then this can go wrong .

So, what we need is two sided ideals. So, let us take I to be a two
sided ideal in R . Then this will also be in I , and so we will get that
this is equal to x y + I as needed . So, multiplication is going to be
well defined on R/I, provided I is a two sided ideal .

Theorem 1.4. If R is a ring and I is a two sided ideal of R ; then R/I
has a ring structure with multiplication given by (x+I)(y+I) = xy+I.

The main point is that this product is well defined only when I is a
two sided ideal and that is what you need to take quotients of rings .
Let us look at an example of a quotient ring construction in the case of
a non-commutative ring . So, let Q be a quiver. So, it is a quadruple
V, E, s, t , where V is the vertex set of the quiver, E is the edge set and
s and t are functions from E to b , which tell you where each edgE∗ts
and terminates . And then, we have E∗ is the set of all paths in Q
and the path algebra K Q is is an algebra is a ring; it is as a as a set,
it is the vector space, it is a vector space with base is given by paths
in Q and a multiplication is defined by concatenation of paths , this
is the path algebra of Q . Now, what I had mentioned earlier and left
for you to check was that, if you define N to be the span of p in E∗ ,
such that the length of p is positive, then N is a two sided ideal . In
fact, in Q there are two kinds of paths , so, the trivial paths, so we
have the paths ei , i ∈ V . So, this is the trivial path at I; it is a path
of length 0 does nothing, just stays at the vertex i and then there are
paths of length , positive length . So, K[Q] has a vector space over
K , this is spanned by paths of positive length. Ttherefore, we can
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define isomorphism from K[Q]/N just a linear map to K[{ei}] using
this decomposition which is a projection map.

What this map does is; if you have any linear combination of paths,
you just take all the paths of length greater than 1 and send them
to 0 and just keep the paths, the trivial paths. This linear map has
kernel exactly equal to N . So, what we get is K[Q]/N is isomorphic
to i belongs to V K[{ei}]. And this in fact turns out to be a ring
isomorphism.


