
ALGEBRA I

1. Lecture 41: Ring problems

We have seen in the lectures that Euclidean division works for Gauss-
ian integers. So, what we know is that given m and n which are Gauss-
ian integers, there exist Gaussian integers q and r such that n = qm+r 
and the size of r is strictly less than the size of m. So, here for a Gauss-
ian integer, recall that the size is a2 + b2.

So, here is the first problem . Find q and r, given n = 15 + 7i and 
m = 3 + 2i. So, what we will do is, we will first use division of complex 
numbers to find a solution that is rational the the rational quotient of 
this that will not be a Gaussian integer , but let us just do that and

m
= 15+7i

3+2i
= (15+7i)(3−2i)

13
= 59−9i

13see what happens. So, n . This q is not

going to work for us, because we want a q that is a Gaussian integer. 
So, what we will do is, we will take a Gaussian integer that is really 
close to this. So, the nearest integer is 5. So, take q to be 5 and the 
nearest integer to - 9 by 13 i is - 9 by 13 is - 1. So, let us take 5 - i and 
so, so now, we try to write n equals 5 - i into 3 - 2 3 + 2 i + r, then we 
can solve this to get , so 5 + 3 i that is 15 - + 2 that is 17 and - 3 i + 
; so, - 3 i + 10 i which is 7 i , so what we get is , r = 2 r = well. So, n 
is 15 + 7 i. So, we get r = - 2 . So, what we have is n = q is now, we 
have taken q to be 5 - i into 3 + 2 i - 2 . So, q equals 5 - i and r equals 
- 2 and indeed, we see that the size of r is 4 , which is less than the 
size of 3 + 2 i , which we saw was 13 . Now, let us see why this always 
works . So, so the algorithm for dividing Gaussian integers finding the 
integral you know with quotient and remainder for Gaussian integers is 
this, you just do the complex division and then, you find round off the 
real and imaginary parts of the quotient to the nearest integer and you 
use that as q . And then, you multiply that q by m and you compute 
r and the fact is that this r will always have size smaller than m and 
why is that the case. So, let us just do a little bit of analysis. So, n 
by m is q + α and we know that the real and imaginary parts of α are 
each less than or = half. So, what we know is that real part of α . This 
is what is we are taking q to be the what we get when we take n by m 
and round off the real and imaginary part to the nearest integer. So, 
real part of α is less than or = half and imaginary part of α is less than 
or = half . So, what we get is α d of α is less than or = half squared +
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half squared which = 1 by 4 + 1 by 4 , which is half . So, d of α is less
than or = half and now, r is taken to be α times m . So, so d of r is
going to; because of the multiplicativity of this d function which just
holds for Gaussian integers, d of r turns out to be d of α times d of m
which is then, less than or = half d of m which is strictly less than d of
m . So, this is why this method I have described for doing Euclidean
division of Gaussian integers actually, always works ok. Let us move
on to problem 2.

Example 1.1. Is 3 a Gaussian prime? Suppose that 3 is not a prime
and try to see if we can find a factorization of it . So, suppose not ,
then we would be able to write 3 = (a+ bi)(c+ di), where a+ bi, c+ di
are Gaussian integers.

So, what that means is, for for Gaussian integers, the only units are
1 i - i and - 1. And so basically; that means, that a2 + b2 > 1; that is d
of a + bi and c squared + d squared is greater than 1, because if they
were = 1, then they would be 1 of a 1 i - 1 and - i, which are the units
. Now, let us use the multiplicativity of this norm or absolute value
of complex numbers this is the squared absolute value. So, that is also
multiplicative. So, we have that 9 = (a2 + b2)(c2 + d2). Therefore, we
must have a2 + b2 = 3 and so is c2 + d2. But since 3 cannot be written
as a sum of two squares; such a b c d do not exist therefore, 3 is a
prime in Z[i].

Example 1.2. Is 5 a prime in Z[i]? I can take a = 2, b = 1. And so,
you you are getting 5 = 2 + i and into what? Now, easily see that 2 -
i works . And you can also do it another way, which is you can take
a equals a equals 1 and b equals 2 and so, you will also get i + 2 into
i sorry that is the same what I meant to say is ; 1 + 2 i into 1 - 2
i and this will also be = 5 . So, here are two factorizations of 5 and
these are not units; however, these two factorizations are equivalent in
the sense that if you take 2 + i and multiply it by i, then you will get
- 1 . So, if you multiply it by say - i perhaps , then you will get 1
+ 2 i. So, this this prime is a unit multiplied by this prime so, they
are associates. And this prime is a unit multiplied by this prime. So,
in some sense, these two factorizations of 5 into smaller primes are
equivalent. Anyway, the answer to our problem is no 5 is not a prime
in Z[i].

In fact, what these two problems show you is that a prime number is
is not a prime in the Gaussian integers, if and only if it can be written
as a sum of two squares. And if it cannot be written as a sum of two
squares, it will be a prime number in the Gaussian integers. And it is a
result in number theory that a prime number can be written as a sum
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of two squares, if and only if it is congruent to 1 mod 4. There is a very
beautiful discussion of this in Michael Artin’s Algebra book . I think
you have to look at chapter 11, section 5 of Michael Artin’s Algebra
book. And you will find a complete description of which prime’s in the
integers are primed in Gaussian integers, how they decompose etcetera.
We will end this problem session by looking at a problem which I had
promised we will discuss later on . And this is the following. Show that
the ideal generated by 2 and x in polynomials with integer coefficients
is not a principal idea . We have seen that if we take polynomials
with rational coefficients or coefficients in any field, then they form a
Euclidean domain. And so, every ideal in this ring of polynomials with
entries in a field would be a Euclidean domain and hence, a principal
ideal domain. However, when you take polynomials with integers then,
they do not form a principal ideal domain and this solution is not very
difficult. Maybe, you can take a few minutes to try it out yourself
. If not, you can follow the solution that I will give you now . So,
suppose this were a principal ideal . So, it would be generated by
some polynomial f(x). So, this would again be a polynomial with
integer coefficients . What we would have is that then, 2 is in the ideal
generated by f(x). So, 2 = f(x)g(x). So, the degree of 2 which is 0
would be the sum of the degrees of f and g therefore, f would have to be
of degree 0 which means that f would have to be a constant polynomial
ok . And moreover, f would be = 1 or f would be = 2, because it would
have to divide 2. And now, x is going to be = f x times h x for some
polynomial h x . This implies that , so f has a coefficient 1. So, you
cannot have you cannot have f = 2. So, this implies that f = 1 . So, if
this were a principal ideal that have to be generated by 1, but 1 does
not even belong to the polynomial ring generated the ring generated
by 2 and x . Why is that ? Because if you take something in this ,
any element of the ideal generated by 2 and x is of the form 2 times h
x + x times g x for h x g x in Z x. And so, if you substitute x equals
0 , so we have that 1 is 2 h x + x g x. Substitute h equals 0 you get
1 = 2 h 0 + 0; which would mean that 1 has to be an even number,
which is clearly false . So, we get a contradiction . So, we see that
the ideal generated by 2 and x in the ring of polynomials with integer
coefficients is not a principal ideal.


