Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 37: The fundamental theorem of arithmetic

Developments in the theory of commutative rings have been driven by mainly two areas of mathematical exploration; one has been number theory and the other algebraic geometry. One of the most basic theorems in number theory is the Fundamental Theorem of Arithmetic

Theorem 1.1 (Fundamental theorem of arithmetic). Every integer n can be expressed uniquely as

$$n = p_1^{k_1} \dots p_s^{k_s}$$

for distinct prime numbers p_1, \ldots, p_s with exponents $k_i > 0$ for all $i = 1, \ldots, s$.

Proof. The proof is by induction. We prove the existence and uniqueness in two steps. For the existence, it is easy to prove for n = 1 which is the basic step of the induction. Given an integer n, if n is prime it is true of it so we assume it is composite. Then there must be a prime p that divides n. Then $\frac{n}{p}$ has a prime factorisation by the induction hypothesis. Multiplying both sides by p provides a factorisation of n. For uniqueness we need Bezout's formula: if m and n have gcd equal to d, the ideal generated by m and n is the principal ideal generated by d.

An easy way to prove this is to use Bezout's formula. So, p is a prime number and we want to show that if $p \nmid m, p \nmid n$ then $p \nmid mn$.

Given two factorisations

$$n = p_1 \dots p_r,$$

$$n = q_1 \dots q_s.$$

Then we have each of the primes p_i must divide the second factorisation; thus must belong to the list. Similarly each prime q_i must divide the first factorisation; thus must belong to this list. This proves uniqueness.