Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 35: Euclidean domains

Given integers m, n with m > 0, there exist integers q, r such that n = qm + r, and $0 \le r < m$. Define (m, n) to be the ideal generated by m, n. The Euclidean algorithm gives a way to find their gcd.

Lemma 1.1. Given n = qm + r, then (m, n) = (m, r).

Example 1.2. Let us start with the numbers 168 and 49 ok. So we have

$$(168, 49) = (49, 21) = (21, 7) = (7).$$

Polynomials also admit Euclidean division. Given polynomials p(x), h(x) then there exist q(x), r(x) such that

$$p(x) = h(x)q(x) + r(x)$$

with $\deg(r) < \deg(h)$.

The Euclidean domain is a ring R which has the following properties.

- Commutative ring.
- Integral domain.
- There exists a size function $d: R \to \mathbb{Z}_{>0}$.
- For all $m, n \in R$, $m \neq 0$, there exist $q, r \in R$ such that n = qm + r, where d(r) < d(m) or $r \neq 0$.

An ideal in R is a subset $I \subseteq R$ such that

- *I* is a group under addition.
- For all $a \in I$, rinR, $ar \in I$.

A principal ideal is of the form (m) for some $m \in R$.

Theorem 1.3. Every ideal in a Euclidean domain is a principal ideal.

Let us look at one more surprising example of a Euclidean domain: Gaussian integers. The function d is defined by

$$d(a+bi) = a^2 + b^2.$$