
1. Lecture 33 [Generators and Relations of Symmetric Group - II]

So, last thing we talked about Generators and relations for the symmetric group S3 . Now, 
more generally what if we had the symmetric group Sn where n ≥ 2 now this is just a slight 
difference . So, here is the theorem. So, let n ≥ 2 . So, I want to give generators and relations 
.

So, let n ≥ 2, then Sn symmetric group is isomorphic to the free group on n − 1 generators 
ok. So, let me give them a name now F ({a1, a2, ..., an−1}). So, there are n − 1 in all and 
modulo the normal subgroup N generated by where N equals the normal subgroup generated 
by a short list of relations.

So, what are the relations we need by the following elements ? First ai2 ok. So, this is like 
the a2 and the b2 that we had in the case of S3. So, this is ai2 for 1 ≤ i ≤ n. So, this is one set 
of elements I need The second collection of elements I need are like the ab whole cubed that 
we had in the case of S3 . So, that is the following. I take each generator ai and multiply it 
with sort of its adjacent generator the next one ai+1. So, I look at (ai, ai+1)

3. Now, here i
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can go from sorry, here it can go till n− 1 here it can go until n− 2 ok. So, this is the second
sort of element I need in the kernel.

And, the third sort which we did not have in the case of S3 because it is too small, but
here we will have it in general is elements of the following form. So, let us take any ai and
multiply it by aj and take the 2 of this element . Now, what are i and j here? j 6= i+ 1 ok.
So, j has to be greater than i, but sort of farther than just one step apart ok. So, it is two
steps or more from i. So, here we say thati and j well let us say i and j are firstly, between 1
and n − 1 , but j is at least i+ 2 . So, this is the third collection of elements you need.

And, well between them they together they give you a collection of relations . So, they
give you a set of elements and the normal subgroup generated by this set is exactly going to
be the kernel of of the the map from the free group to this ok. So, let me sort of give you an
indication of the proof which is almost along the same lines as for S3 .

So, the first thing is from the free group, so let F denote the free group on these n − 1
generators . From the free group we can define a map a homomorphism π : F → Sn as
follows ; it takes, so this is a homomorphism π like in the case of S3a1 → (12) , a2 → (23)
and so on till an−1 → (n − 1, n) , ok. And, as before thisthis defines a homomorphism by
the universal property of of free groups, it is enough to specify it on these elements a1 , a2 ,
an−1 ok .

But the fact that you are mapping it to these transpositions implies in particular so, observe
that just like in the case of S3 that each a2i is going to map under π to this transposition
(i, i+ 1)2 ok and a transposition of course, has order 2 ok. So, each a2i maps to the identity.
So, a2i is in the kernel, if I take a pair of consecutive elements (ai, ai+1) where does it map?



3

Well, it maps to the product of these two consecutive transpositions , but that is just a
three cycle (i, i+ 1, i+ 2) whose cube is identity. So, therefore, this cubed is just cube of this
product which is again the identity ok.

So, thus far it is like the the computation for S3 and now, comes the newingredient if I
take (ai, aj) two generators which are far apart meaning not just one step apart , but at
least two steps apart, then their product maps to well what is it mapped to? It maps to
(i, i + 1)(j, j + 1) . But, these are now two disjoint transpositions ok. There they have no
elements in common because j 6= i + 1 it is greater than i + 2 greater than equal to i + 2
. So, this is like a product of two disjoint transpositions and this element still has order 2 .
So, if you take the square of this, it is just going to give me the identity again .

So, that is where we we got those those relations . So, a2i is surely in the kernel, (ai, ai+1)
3

is in the kernel and (ai, aj)
2 is in the kernel this is for j ≥ i + 2 ok. So, we know for sure

that the the subgroup N that we wrote out the normal subgroup generated by these these
elements that is surely contained in the kernel .

So, what we know is that this normal subgroup N like in the case of S3 is contained in the
kerπ and again one sort of proceeds in the same fashion as before . You know that F

kerπ
is

well there is an isomorphism to the group Sn and since N ⊆ Ker(π) from F
N

to this I have a
surjection ok . Just the usual the same maps that we wrote out before gN → gkerπ → π(g)
.

So you have these these maps and to prove that N equals kerπ is the same as showing that
this this whole composite map is is an isomorphism . So, if we can take this composition
here and show that this composite map is an isomorphism, then we are done ok . So, that is
what we are we still have to prove andto prove that so, need to prove that this green arrow .
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So, this green arrow is an isomorphism that is the claim ok. And, to prove that I mean the
proof is still indirect like before which is we show that F

N
has at most the number of elements

in in Sn . So, claim the proof proceeds via counting argument we show that this can have at
most n factorial elements and recall that is the cardinality of Sn .

Once you show this, because there is a surjection it has to have at least n factorial elements
and the claim now . So, the claim further claim is to say it has at most n factorial elements.
So, together it will show that it has exactly n! elements and then you know you proceed like
in the case of S3 .

So, now, I am I am sort of just going to indicate how how to do this. You have to proceed
as in the case of S3 . So, the proof proceed as in the S3 case as in the case of S3 ok which is
that you have to write out all the the different possible cosets of elementsof this kind look at
[w]N and write out what are the all the possible cosets. So, look at all this {[w]N : [w] ∈ F}
and now you will have to countthe cosets and show that there can be at most n! of them .

So, I wouldsort of say the hint is first do it for S4 do it for S4 and that will sort of tell you
how to how to do the general case . And, for S4 let me just tell you what is it that you have
to prove . So, here I have three generators in the case of S4 . So, recall I had a1 , a2 , a3
these are the three generators .

So, maybe it is easier to let us just rename them as a, b and c in the case of S4 . So, what
we had in the case of S3 was the following . We said look at the following six cosets. So,
those those very same cosets will also be required here aN, bN, cN sorry there is no c here
{N, aN, bN, abN, baN, abaN}. So, these six cosets were what you need in the case of S3 .
Now, in the case of S4 we will need 24 cosets. ok What are the 24? Well, these 6 certainly
are there in addition we also need this look at what I call cT which is the very same 6 cosets
with c multiplied on the left dot dot dot. Same thing with so, look at bcN and abcN ok this
will again give me a list of six bcN sorry, bcT , I am sorry T was my set of six cosets . So,
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bcN then there was so, you have aN look at bcaN dot dot dot six of them . abcT again is I
take abcN . So, I had aN , so, I just put abcaN dot dot .

So, I have 6 + 6 = 12 on this page and 12 on the earlier page . Show that these 24 cosets
are all you need . Any other word that you write out in the a, b and c will always reduce
to one of these these 24 ok. And the way to do it is sort of also an an inductive process
only look at words which have a’s and b’s to start with ok and that is like the S3 calculation
which we have already done and now, insert the c.

And, now put the extra cN and see what happens ok. So, I am going to leave this for
you to explore and play with. So, it it is ai t is a very good exercise because it sort of gives
yousome facility in working with free groups and so on , ok. But let me now move on to
what is the application of of this generators and relation procedures . So, here are some
applications. If you can realize a group by way of generators and relations what it gives
you is a way of constructing homomorphism’s that is the key key use of having generator
simulations . If I want to construct homomorphism’s from my group Sn ok Sn is the group
which I now understand in terms of generators and relations I can construct homomorphism’s
from Sn → G ok.

How do I construct them? Well, here is the the proposition . So, I should say applications
of of the generators and relation procedure, it allows us to constructallows us to construct
group homomorphism’s from Sn to any other group ok. So, what is the the procedure? How
do you construct a group homomorphism? Well, here is what you need to do .

You need to find n− 1 elements in your group G which sort of obey the same relations as
the generators of Sn ok. So, let {g1, g2, ..., gn−1} ∈ g satisfying the following properties that
g2i is the identity for all 1 ≤ i ≤ n− 1 . So, this is identity of the group G .
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Now, (gigi+1)
3 = id in the group G this is for all 1 ≤ i ≤ n−2 and the third set of relations

which is (gigj)
2 = 1 is the identity for all j ≥ i + 2 ok and between 1 ≤ i ≤ n − 1 . So,

in other words, I find n− 1 elements of my group G which satisfy the same relations in the
group G that my generators of Sn are supposed to satisfy .

If I can do this then I am guaranteed there exists a group homomorphism from Sn to my
group G such that which sendsthe the corresponding elements of Sn . So, what elements?
The elements σi → gi ok where σi is are the the transpositions where σi = (i, i+ 1) ok.

So, if you want to map the transpositions to any elements of the group G those elements
must satisfy the same relations that the transpositions do and conversely that is all you need
if you have that then automatically there exists a well defined group homomorphism ok. So,
let us prove this proof . Where do we get this from? Well, from from the we need to go to
the free group to get this ok. We cannot just work with Sn itself to to prove this fact. So,
observe that from my free group on n − 1 generators .

So, I had the free group F (a1, a2, ..., an−1). From that free group I always have a map
F (a1, a2, ..., an−1)→ G ok. What map is this?Maybe we should call it something π this map
just sends the generators ai → gi ok for all 1 ≤ i ≤ n− 1 .

So, there exists a homomorphism there exists a homomorphism like this. Why does it
exist? Well, from the universal property of free groups I can always specify arbitrarily where
I want to map my ai ’s and that always defines the homomorphism ok. But, recall thatthe
the gi is satisfy those special relations .

So, let N be the normal subgroup generated by those relations normal sub group generated
by the set {a2i , (aiai+1)

3, (aiaj)
2}. So, here I am I am just suppressing the the the bounds

by I mean the ranges for i’s and j’s, but I mean we have we have looked at this before . So,
normal subgroup generated by that set of relations.
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Then observe that then observe that since gi satisfy the same relations it is clear that each
of these generators and a2i will map to g2i , but that g2i is the identity ok and so on . (aiai+ 1)3

will map to (gigi+1)
3 but then that was assumed to be the identity in the group ok. So, in

other words all thesethese relations are actually satisfied in G, in other words each of them
lies in the kernel of this homomorphism π ok by the hypothesis by the given hypothesis on
the elements gi .

Now, we are almost back to our our usual situation so, what does this mean? So, I have
now a map from F

N
→ F

Ker(π)
and F

Ker(π)
∼= Im(π) by the first isomorphism theorem this is

isomorphic to the the image of π. The imageπ is some subgroup of my original group G .
So all this is just repeating the same arguments we did before. So, I can get a sequence of

homomorphisms like this this is just gN → gkerπ → π(g) ok πg is a subset of G. So, this is
for all gi n my free group F ok. So, I get this this sequence of homomorphisms . Now,what
is it that we have? Well, we wanted to get a map from the symmetric group Sn → G ok,
but observe that this F

N
. So, now, comes our our the use of our theorem this last guy F

N

remember is exactly isomorphic to the symmetric group right from F
N

recall I actually have
an isomorphism to Sn ok and what is this this isomorphism do now we just have to unravel
what this isomorphism does ?

So, let me write out this this isomorphism just on those special elements . So, what was
this isomorphism doing? Well, if I take the special generator aiN it was mapping it to
those the the transposition σi right. This is how we defined that map how did we prove the
isomorphism between F

N
and Sn we defined a map from F → Sn which takes ai → σi ok and

so, the coset aiN therefore, was mapping to σiN just by the first isomorphism theorem . So,
now, we we are all set because now we know what aiN goes to. It goes to ai kernel π which
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in turn goes to π of ai , but πai by definition was gi ok. So, we just have to stare hard at
this equation .

So, of course, this this isomorphism is is defined as going in this direction , but all I have
to do is just think of the the the reverse isomorphism I just take the map from Sn to this
which is the inverse of this map . So, this map σ i maps to aiN maps to ai kernel π maps to
gi . In other words, what I have done is to show that I have constructed a homomorphism
from Sn to the group G and this homomorphism takes the element σi exactly to the given
element gi ok and that is that is what we set out to prove that finishes the proof.

So, if you give me gi ’s with the correct properties, then I can construct for you a homo-
morphism from the group Sn → G ok which maps the the the σ i’s to the element which
maps these σ i’s to the elements gi ok. So, that is the the crux of this this proposition .

So,in particular so, here is one one simple application of this So, so here is a question what
are homomorphism? So, find all group homomorphisms from the symmetric group Sn to?
What I will call C× . So, this is just the set of nonzero complex numbers under multiplication
Z 6= 0, thought of as a group under multiplication ok this forms a group because I have
inverses and so on . So, the question is uh what are all the group homomorphisms that you
can define from Sn to this group? Well, I let us think of it as an application of our earlier
principle . So, what did we say in order to define a group homomorphism from Sn to to C×

what I need to do is give you elements . So, I I know that I have these n− 1 generators of Sn
and if I stipulate their images . So, {Z1, Z2, ...Zn−1}, if I tell you where they map then,that
sort of determines my homomorphism . So, we needfind all group homomorphisms is the
same as saying fine.

So, I am rewording the question find all collections of Zi 1 ≤ i ≤ n−1 of complex numbers
non zero complex numbers satisfying the following relations that all Z2

i = 1. So, 1 is the
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identity for the multiplication operation and (Zi, Zi+1)
3 = 1 and (ZiZj)

2 = 1 for all j greater
than or equal to i+ 2 ok.

So, these two problems are actually equivalent. It is it is enough to do this . So, so this
thing that I wrote here is the same as the original question ok, that is the that is the beauty
of this . So, just homomorphisms are just these n − 1 tuples of special elements which satisfy
the correct relations . Now, it is easy we just have to find such complex numbers . So,
observe Z2

i equals 1 for all i means of course, that what are the the conditions. We conclude
Zi can only be + or − 1 for all i, ok. Now, if Zi is say − 1 for all i.

So, here are two cases either Zi equals 1 + 1 for all i ok that gives me one obvious
homomorphism which is that the identity homomorphism everything maps to the identity.
So, this is this is a valid choice because σi maps to 1 for all i means the homomorphism from
Sn to C star is just every every permutation maps to 1 . Because I can write any permutation
as a product of these simple transpositions and if every transposition maps to 1, then every
element has to map to 1. So, that is case 1.

Case 2, suppose Zi = −1 for some i just a single i then I need to figure out what are my
choices is this a valid choice of Zi . Well, at the moment I only used 1 relation I still have
other relations which is (ZiZi+1)

3 = 1 , . So, it is trying to use the cube relation . So, let us
look at ZiZi+1 . So, if if i is not n− 1 , then I I will have something next to it the next guy
. So, observe (ZiZi+1)

3 = 1 is supposed to be 1. Well, what does that this mean if Zi = −1
and the product cubed is 1, then the only way out. And and Zi+1 = −1, right. So, there
is only 1 choice both Zi and Zi+1 must have the same sign; they have opposite signs their
product is −1 . So, this means that Zi and Zi+1 have the same sign .

In other words, since Zi = −1 this means that Zi+1 = −1 a ok. Likewise, so I can replace i
by i− 1 and conclude that Zi−1 = −1 ok because it is the adjacent guides the previous guy I
can apply the same relation with i− 1 in place of i ok and and we keep going. Since Zi−1 = −1
the one before it which is adjacent to it must also be the same sign; since Zi+1 = −1 the one
after it must also be the same sign and so on.

So, on the 1 hand you keep going forward and on the other hand, you sort of keep going
backward and this this argument says as soon as one of the Zi ’s is − 1 everybody after it is
− 1 and everybody before it is − 1 ok. So, this finally, implies that every single Zi ’s so, Zj
has to be − 1 for all j .

So, this is the only other possible homomorphism and again what does this homomorphism
look like at the level of the what does it do to the other elements of the symmetric group?
So, if I take Sn to 2 C hash. So, I have said σ1 , σ2 , σn−1 all the simple transpositions map to
−1 that is what this homomorphism does , but what what about the other elements? What
if I take an arbitrary permutation in Sn what does it map to? Well, what am I supposed to
do? I take that arbitrary element and I write it as a product of the simple transpositions ,
ok. And, this map phi is well, what is it? phi gi s + 1 well, it is it is always + or − 1, but
it is + 1 if gi s a product of an even number of transpositions of an even number of simple
transpositions .

These simple transpositions are just the σi’s and it is − 1 if well if this is an odd number
of simple transpositions, ok and recall this is exactly the thing that you have seen before
this is the sign map, this is the sign of a permutation which is if you write it as a product
of transpositions whether you have an even or an odd number ok. So, what we have proved
therefore, is that there are just two possible homomorphism’s . So, the question was find
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all homomorphism’s from Sn → C× turns out there are exactly two of them ok which is the
identity which takes everybody to 1 and the other which takes everything to a −1 .



11


	1. Lecture 33 [Generators and Relations of Symmetric Group - II]



