
1. Lecture 30 [Free Groups IV]

So, what we will talk about today is what is called the universal property of a Free Group. 
So, what do we have, we have a set S and given the set S we have constructed something 
called the free group on this set S or generated by this set S = {a, b}.

Now,between these two objects the set and the free group generated by that set there are 
in fact, is a certain natural map ok. So, what map is this? So, we will give this map a name 
I will call it j, what does this map do? Take any alphabet take any element x of the set S. 
So, for example, for the free group on two generators we had called them {a, b}. So, X is say 
a or B in that case. So, more generally X can be any element of the set S.

Now, how do we associate to this an element of the free group . So, we do the following 
we first think of. So, maybe it is best to think of this in the following waylet us map S to 
the set of all words in s hat the augmented alphabet. What map is this, well the element X 
first is going to map to the word X . So, think of this as just the word X it is got length 
1. Now, from the set of words in s hat to the free group I have the following obvious map 
given any word I can associate to it the equivalence class corresponding to that word ok.

1

Algebra - I
Prof. S. Viswanath & Prof. Amritanshu Prasad

Department of Mathematics
Indian Institute of Technology, Madras      



2

So,the net result is that this map j that I have talked about is the following it sends X to
the equivalence class of just the singleton word X ok. So, that is sort of a natural map.

So, for instance if we take the free group on two generators that we talked about. So,
this is let us illustrate this phases a, b. I have the free group on two generators this natural
map just does the following it takes a and maps it to the equivalence class of [a], b to the
equivalence class of [b] ok. So, map to the free group.

Now, observe thatS is just a set F (S) is a group, butfrom a set to a group, you have a
function you really cannot talk about other extra properties that the function can have right.
For example, if you have a map between two groups, as we have seen before we can talk
about homomorphisms sub groups ah, but in this case one of them is just a set. So, it is
justa map of sets or in other words it is just a function ok.

So, this is a function so, just a map. And, what is the image of this map. So, what is
the range of this function if you wish? So, let me call this the range of this function f , well.
What is this by definition this is just the set of all equivalence classes of the singletons X as
X ranges over S ok. So, this is some subset of the free group and here is the firstimportant
observation that this subset range of S. So, here is the let us call this a proposition. So, here
is a proposition , this particular subset the range of this function range of this function j in
fact, it is a subset of the free group which generates the free group ok.

Proposition: Range(j) generates F (S), i.e 〈Range(j)〉 = F (S)
In other words, if you recall we had this notation which said given any subset this case

the Range(j), the subgroup generated by that subset which means the intersection of all sub
groups of F (S) which contain the subset that subgroup the subgroup generated by this is in
fact, the whole group that is what we mean by saying it generates this ok.

So, the proof well rather easy there are some obvious elements which belong to the range
for example, by definition this belongs to the range and hence to the sub group generated by
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the range . Now, whenever an element in this case X singleton belongs to a subgroup the
inverse of that element. So, this means that the inverse of X also belongs to that subgroup
ok. But observe the [X]−1 as we have already seen is nothing, but the equivalence class of
the word [X ′] ok. So, what does this mean, this means that [X ′] ∈ Range(j) ok. So, we
have identified two very important classes of elements one is X itself, the other is X ′ . So,
all of these guys belong to the range of j ok and this is true for every X in the alphabet S.
So, in particular if your alphabet only had two elements {a, b}, what we are saying is that
the a, b as well as {a′, b′} all four of these belong to the subgroup generated by the range of
this function ok.

Now, that is more or less all we need as soon as you have these four types of elements,
I mean we have these two types of elements X and X ′ . This automatically means that
everything else belongs ok. So, what are all the other, what is the typical element of F (S)
going to look like? Well, it is going to look like the following you take a word take w to be a
word in the augmented alphabet then the typical element. So, look at the equivalence class
of [w] this is an element of the free group . So, every element of the free group is of this form
the equivalence class of some word, I claim that this equivalence class of [w] also belongs to
the subgroup generated by sorry that that is going to be edited out .

So, let me start again from the claim. So, the claim is that the equivalence class of [w]
belongs to the image of or the range of this function . The subgroup generated by the range
ok and why is this, what does a typical word look like. So, there is a proof of the claim. So,
imagine, what does a word look like? So, let me just describe the basic idea and leave the
formal writing out of this argument to you ah. So, for example,if we were in the the free
group on two generators case here is the. So, here is an example , say maybe this is a typical
word may be the word looks like this ok.

So, if this is what your word looks like, then observe the equivalence class of [w] is by
definition. So, w itself is a concatenation of all the singletons right w can be thought of as
the singleton a that is a word concatenated with the word, the singleton b concatenated with
this word, with the next one with a with b with b and a′ok.

[w] = [a][b][a′]

So, when you look at the definition of the product in the free group it is just this multiplied
by dot dot dot all the way till the last alphabet which is a′ok. So, the equivalence class of [w]
is nothing, but the product of equivalence classes of singletons just words of length one and
each singleton is of the form either a or a′or b or b′right. So, more generally if you would write
this proof out for the case of an arbitrary set S, each w would be written as a productsimilar
product in which each alphabet which occurs each letter which occurs is either an element
X of the alphabet or of the form X ′ for some X ′ in the alphabet ok, just like what we see
here.

So, what does that mean, but now observe each of these guys we have just proved that a
belongs to right. So, we have just shown that a is an element of the image of j or the range
of j b the singleton belongs to the range, a′belongs to the range , b′if it occurs belongs to the
range and so on right. So, in this case we have shown that each one of the singletons is an
element of the subgroup generated by the range. And so, if each element is in the subgroup
the product is of course, in the subgroup ok. So, this means that because it is a product it
belongs to the subgroup generated by the range of j ok. So, the key idea here is really the
first step. So, this is this is more or less a once you show that the singletons are there in the
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subgroup generated by the range then every word is automatically there because a word is
really a product of singletons ok.

So, what does that mean; that means, that finally, we have shown thatw belongs to the
subgroup generated by the range of j and so; that means, every element of the free group
itself is contained in the range ah, but of course, the subgroup sorry the subgroup generated
by the range. But the reverse inequality is of course, true the subgroup generated by the
range is always I mean after all by definition it is a subgroup of the free group. So, this is
obvious and so we have inequalities or ratherthe subset sign going both ways which means
these two are actually equal. So, the free group is equal to the the subgroup generated by
the range of this special map j ok and in some sense this is the sense in which this we say
that the free group is the group generated bythe set S we identify the set S in some sense
with the range of this this map j ok.

Now let us go on to the the the universal property itself. So, this is sort of the first step
in some sense. Now let us move on to the universal property. So, call this ok. Now let us
formulate this in the form of a proposition . So, it says:

Proposition: let K be any any group and, f : S → K be any function just a map of sets.

Then, there exist a unique group homomorphism f̃ : F (S)→ K such that f̃ ◦ j = f
So, this is thethis is the statement of the universal property of the free group.
So, let us just try and understand this what it saysa little bit more ok, for this it is easiest

if we just draw diagram. So,recall what is given is your set s a group K and a function
between them f . Now, j as we saw earlier is a certain distinguished map from the set to
the free group generated by the set. Now what is being ascertained here is that there exists
a group homomorphism. So, f and j are not group homomorphisms, they are just maps of
sets, but the claim is that there is a group homomorphism ok. So, the existence of this map

which we will call f̃ is the content of the proposition. So, that is a group homomorphism ok.
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And further its unique so, there is also an additionalthing of uniqueness such that, this
what we usually express as such that this diagram commutes. So, if you see what thisidentity

says it is f̃ ◦ j = f , which means that if you sort of go from S downwards and then like this.

So, that is your f̃ ◦ j or you just go straight to K that is your f ok, such that whether you
go down like this or straight like this you get the same answer and this is what we usually
express by saying such that the diagram commutes ok which diagram the one that I have
just drawn ok.

So, the the key assertion here is the existence and uniqueness of a group homomorphism
which makes this diagram commute ok. So,let us try and prove this, the proof itself is rather
easy some sense everything about the proof is already forced it is all determined. So, we just

have to follow what is required to be satisfied by the function f̃
So, let us let us start here. So, maybe for concreteness let me illustrate the proof again for

the case. So, let me just say for concreteness , I will illustrate the proof for for the free group
on two generators, but you should be able to extend it without any difficulty to arbitrary
free groups. So, what is it that we need, we need from the set Sto K you are given a map f
I have to construct a map like this right. So, this is this is the thing that I still do not know
this is the original map j ok.

So, let me see what properties my f̃ has to satisfy this this map f̃ . So, observe that

f̃(j(X)) . So, so here I just have S is {a, b}. So, let us just see what this does to {a, b} first.

So, observe this is equal to f(a) , similarly f̃(j(b)) is supposed to be the same as f(b) ok.

So, this is just by the definition I mean this is the requirement f̃ ◦ j = f .

Now, what is this mean f̃(j(a)) is by definition, f̃([a]) ok f̃(j(b)) again by definition is

f̃([b]) ok. So, what is it that I have to start with, I already know what values f̃ must take
on the range of j ok. I know what value takes on the the singleton equivalence class of [a], I



6

know what value takes on the equivalence class of [b] ok. So, f̃ is partially determined it is
determined it is given to me on the range of this function j that is more or less what it said
ok.

But that is really enough because if you remember what we just did the range of j generates
the free group right it is a generating set for the free group. So, if I know my homomorphism

f̃ on this generating set, I can deduce its values on all the elements of my free group ok and
we will do it in just a second. So, this is what I am I know I must have . So, for now just
treat all this as sort of heuristics we are trying to see what all information we can deduce

about f̃ .

Now, so let us do the next thing what is f̃ , what do you think f̃ should be on let us say
a′, well again as before. So, this is almost like the calculation we just did. So, recall a′is

nothing, but a inverse by definition and a homomorphism since f̃ is a homomorphism, if I
know the value on a then the value on a inverse is just the inverse of that value ok. But now

again f̃([a]) I already know what it is it is f(a) and so this should be f(a)−1 ok.

So, what this means is I also know the value of f̃([a′]) similarly by the same logic I know

the value of f̃([b′]) it is nothing, but f(b)−1 ok. So, what we have done is, we have managed

to find four pieces of information about f̃ its value on a, its value on b, its value on a′ , its
value on b′ ok.

And, now recall that any word you know I am trying to find out how to define f̃ on all of
F (S) ok, but any word in F (S) is well it is a word. So, I mean see equivalence class of [a]
word it can be written as a product of [a] · [b], a′and b′ok. So, that will tell me how to define

f̃ on any word .
So, again let us do it do this by example for concreteness, if I take the word w which looks

like a, b, a′ , b′ , a, a for example, a a b′ok. If this is my w then observe how will I. So, I am



7

going to ask the following question; what should what value should f̃ take on the equivalence

class of [w]? Well, just like the computation we did the value should be f̃ of I first write w
as a concatenation of singletons. So, I think of w as being a into b into a′ etcetera etcetera
ok.

And, now I use the fact that f̃ must be a homomorphism. So, if it is a homomorphism

what does that mean, it says thatthis is f̃ of. So, let us maybe just do it on this page. So, this

should look like this should look like f̃([a]) , f̃([b]) this is just the homomorphism property,

f̃([a′]) etcetera ok, but then each of those we know, we know the answers to those right.

So, for example, this is justlet us do this. So, the answer is going to be f̃([a]) = f(a),

f̃([b]) = f(b), f̃([a′]) = f(a)−1, f̃([b′]) = f(b)−1, next was f(a) let us go back up and check.
So, this was aba′b′aab. So, the last guy is a b′ . So, this is f(b)−1 ok.

So, you can sort of see how I deduced the value that f̃ should take on this word and this

this final answer here f̃([w]) . So, this sort of tells us how we should define this this map f̃

now in general ok. So, now, now that we sort of have an intuitive idea of howf̃ should be

acting , let us just go back and use this as our definition of f̃ ok. So, this this last thing here
is going to begoing to becomeour definition in some sense.

So, now we go back and define f̃ formally . So, define f̃ formally as follows , from the free
group to K as follows take any element w well take any word w, if you wish s hat. Now write
this as a product of a is b is a s and b sa b a a etcetera that is what w is going to look like

in general. Now, the definition so then, define f̃([w]) using the following prescription. So,
let me just describe it you scan. So, here is the procedure you scan w from left to right. So,
step one scan w from left to right , every time you see an a. So, what will you see when you
scan it you will see either an a or a b or an a′or a b′ , whenever you see an a you replace a
by f of a .

So, you will notice that is what we have done here right all the as have become f as replaceb
by f b and if you see an a′you have to replace it by f of a inverse ok. Observe, f of a is an
element of K so f of a inverse of course, makes sense it is also an element of the group K and
similarly you replace any occurrence of b′by f of b inverse again an element of K ok.

Now, replace these and take this product in the same order left to right. So, take the
product of those elements. So, take product in the same order . So, notice K may not be
in abelian group. So, I cannot change the order of my factors, if I see an a before a b then

when I apply my f̃ it should be f(a)f(b), cannot be f(b)f(a) ok.

So, here is the prescription here is my definition of of f̃ ok. Now, having defined it in this
way it is just a question of checking the various properties , so that is the the main definition.

So,let us check the the key properties check properties ok. So, what all will we have to
check. Firstly, there is well definedness ok. We have to check well definedness because,

remember we have defined f̃ on the equivalence class of a word [w]. So, well definedness
just means the following. I need to check the following that if two words w1 and w2 are
equivalent to each other. In other words, if one of them can be obtained from the other by

a sequence of rewriting rules . Then, my f̃ the value on w1 will give me the same answer as
if I compute it on using w2 as my representative ok . And so, let me just sketch the proof
again I will leave this as the formal writing as an exercise to you.

So, observe if w1 and w2 are just directly related by a basic rewriting rule. Suppose, this is
a basic rewriting rule , which means I can get w2 from w1 in one step by just either inserting
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an a a′or a′a or deleting an a a′or a′a or b b′and so on, if you can do that in one step then

this is this is clear ok. Then, it is clear that they both must have the same f̃ ok, then it is
clear that this equation. So, let us call this equation star it is clear that this equation star
holds , why is that because what does w1 look like it is a product of a’s, b’s, a′ ’s, and b′ ’s
in some order right. Let me assume thatI obtained w2 from w1 by let us say insertinga pair
a a′somewhere ok. So, let us assume this was w1 and let us assume w2 was the same thing
as w1 except somewhere here in the middle I inserted an additional a a′ok, the rest is the
same .

Now suppose this is how I got w2 from w1, it is now got length 2 more, but now if you see

what our prescription was, how did we compute f̃([w2]) , the definition is you just apply you
know you look at each of these dots from left to right if it is an a you replace it with f a, if it
is a′you replace it by with f a inverse likewise for b ok. So, you will you will keep scanning it
from left to right it will become either f of something or f of something inverse dot dot dot
and now so far it will be the same whether you do it on w2 or on w1 thus far both are going
to give you the same answer. The only difference can arise when you see the a a′in w 2, now
for thatwhat is the prescription say, when I see an a I am supposed to replace it with an f a,
when I see an a′I am supposed to replace it with an f a inverse ok.

So, these are the two extra terms that I get in w2 and again the rest of the terms to the
right of that are the same in both w1 and w 2. So, this part agrees ok . So, these terms are
the same as those in w 1, similarly these terms are also the same as in w 1, the extra is only
in the middle. But observe the extra is just the product f a times its inverse so of course,
that is just the identity element of K. So, this is nothing, but the identity element in K. And
so, this product is just going to give you the same terms that you had in in w 1 times identity
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times the same terms that you had in w 1. So, net result is of course, the same answer as
what you would have gotten for w 1 ok.

And of course, this is the proof for a single basicrewriting rule, but if it is true when you
apply a single rule then of course, it is true even if it is a chain of rules, if you can go from

w1 to w2 by a sequence of steps at each basic step this fact holds that f̃ gives the same
answer. So, of course, even if you have many steps the first beginning and the end of the the

stepthey will still have the samevalues of f̃ ok. So, this is the well definedness . Now,the
other properties are also very easy. So, if you show what do we need to show, we need to

show that f̃ ◦ j = f that is the important one, but that is obvious because of the way I mean

in fact, that was really how we figured out what f̃ should look like.
So, observe this just means the following I should show that I need to prove this that

f̃(j(a)) = f(a) and f̃(j(b)) = f(b) ok, but this is true because f̃(j(a)) observe is nothing,

but f̃(j(a)) is just this a by definition right and f̃([a]) is of course, equal to f(a). So, this
equals f(a) by definition and the same holds for f b ok. So, similarly for f b ok. So, that is
this property now of course, the other important ones are to show it is a homomorphism ok.
So, this one isjust question of figuring out how this works under concatenation.

So, I am going to leave this you as an exercise show that if I take two words w1 and w2 and

try to compute f̃ on their product, then it will just give me f tilde of the first guy times f̃ of
the second one ok. So, again an easy exercise from the definition and finally, what we need

to show. So, with this we are really done with the existence of f̃ right, we have shown it is a
homomorphism, it is well defined, it satisfies the diagram commutes property. Now, what we

need to do is really to show uniqueness ok, that there exists a unique f̃ which satisfieswhich
makes a diagram commute which is a group homomorphism . Now, again uniqueness I am I
am going to state a little lemma and then let you deduce the uniqueness from that lemma ok.



10

So, this is a general lemma really about homomorphism between two groups. So, suppose I
have two groups G and H ok.

So, let G and H be groups and suppose so well I do not really have anything between them
yet let G,H be groups and suppose I have a generating set for G ok. So and let A subset of
G generate G . So, again recall; that means, that the subgroup generated by A is going to
be the entire group G ok. Now, let suppose I have two homomorphisms. So, let f1 and f2
be homomorphisms homs from G → H, then if f1 and f2 agree on A if f1(a) = f2(a) for
all a ∈ A , then they agree on all of G then f1(g) = f2(g) for all g ∈ G ok. So, if I have two
homomorphisms which agree on a generating set then they must agree on the whole group
ok. So, that is a little lemma. So, the proof of the lemma is also an exercise again a very
easy exercise.

Now, what I want you to try and do is to see how this lemma can be used to show a

uniqueness ofthe map f̃ that we have ok. And the the little hint is so use this lemma to
prove uniqueness in the in the main proposition in the universal property proposition ok.

And the hint here recall is the hint is the following recall that the range of the map j . So,
that is the important thing here , this guy generates the free group this is what we proved
first. So, heres a generating set and if two homomorphisms agree on a generating set then
they must agree everywhere ok. So, show that for uniqueness what you will have to try and

show is that, if I have two homomorphisms f̃1, f̃2 both of whichmake the diagram commute
then those two homomorphisms agree on the range of j ok and hence by this lemma they
agreed together ok ok.

So, we will talk about applications of this this universal property next time .
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