
1. Lecture 28 [Free Groups IIb]

Now, the key thing that one needs to prove is really well definedness ok. The key point
here is that this definition is well defined and why does one need to worry about that because
we are picking representatives from these classes w1 and w2 if .

So, its not a priori clear that suppose I changed my representative. So, here is what we
will need to show what if I pick different representatives. So, if x1 is another representative
it belongs to this equivalence class ok and I pick a different representative x2 from the
equivalence class [w2] ok. Then so, what does that mean? I have instead of taking w1 as my
representative I am thinking of x1 as my representative of that class and similarly ok. So, I
am I am changing my representative then. So, suppose I do this, then I need to show that
my right hand side will be the same answer whether I do [w1 ∗w2] and take the concatenation
or I take [x1 ∗ x2] and and take their concatenation, the answers should be the same. its ok.
Then um we need ok we must show that x1 ∗ x2 the equivalence class is the same answer
as what you would get if you took w1 ∗ w2 ok. So, this is what showing well definedness

1

Algebra - I
Prof. S. Viswanath & Prof. Amritanshu Prasad

Department of Mathematics
Indian Institute of Technology, Madras

2

means ok. So, let us prove this. Again it it comes about from the special way in which the
equivalence class or the equivalence relation was defined.

So, observe what are we given we given that x1 and w1 are equivalent to each other. So,
let us prove this given what is given is the following these two are equivalent and what we
need to prove is that the concatenations are equivalent x1 ∗ x2 ∼ w1 ∗ w2 ok. So, what is
equivalent mean? It means there is a chain starting with w1 ending at x1 in which each
intermediate step is obtained from the preceding one by an application of a basic rewriting
rule ok.

So, let us write that down. So, step 1; I started w1 ok and I use my basic rewriting rule,
I get some word , I use again one of the other rules it becomes some other word, etcetera
etcetera till I finally, am able to reach x1 ok. This is what it means to say w1 and x1 are
equivalent to each other ok. Similarly, I have w2 and x2 . So, I can start at w2 , I can follow
my rules successively till I reach well ok. So, that is what the definition says.

Now, given this we need to show that if it start with w1 ∗ w2 , I can reach x1 ∗ x2 by means
of my basic rewriting rules ok. Now, the way we do this is just via this simple observation
that look at this this initial chain, starting from w1 and going to x1 . What does the basic
rewriting rule do ? The basic rewriting rule has the following form. So, for instance if this
is my word w1 , I look through the letters in w1 , I either find a successive pair of the form
aa′ etcetera which I delete or I take my word w1 . I look through the letters, I pick some
position and there I insert a pair aa′ ok. So, the transformation that I perform has this very
specific form. You either collapse or you sort of expand at a certain location in the word.

So, if if I go from let us look at the very first step of the chain I go from w1 to whatever
is the next word in the sequence by means of some basic rewriting rule then here is what it
means, it means that look at w1 and the next guy . Now, to w1 on the right hand side, I can

3

let me try doing this. Let me concatenate w1 on the right hand side with the word w2 ok
and the next step in the chain I will do the same thing to it. I concatenate w2 to that word.

Now, if this second guy can be obtained from the first one by some basic rewriting rule,
then it follows that w1 ∗ w2 will lead to that word x1∗ w2 ok. I can take the second guy
and I do w2 to it. So, maybe I should give this give this a name . So, this intermediate step
suppose, I call it z1 that is my word, then here is what I mean that if from w1 to z1 I can go
by means of a basic rewriting rule. I can also go from w1 ∗ w2 → z1∗ w2 by the same rule
really ok, because I only need to apply that rule to the w1 portion of my word now and so
on.

So, the next step again, because I can go from z1 to the next fellow z2 by means of some
rule, it means I can also go from z1∗w2 → z2∗w2 by using the same rule, but only applying
into the z1 portion and so on ok. So, keep doing this till you reach the end. So, the end here
is x1 , but of course, remember I have starred every one of them with the w2 ok.

So, I have started at w1 ∗ w2 which is what I need to start with ok. So, we have managed
to go from w1 ∗ w2 which is what we wanted, but we have only reached x1 ∗ w2 ok, but
that is already a very good start, because now we do the same thing with the with the other
sequence. We know that we can start at w2 and reach x1 . So, now let us do the same thing
here this implies. Now, I will sort of concatenate on the left of w2 . So, starting at at w2 , I
can reach the next step whatever this this word is. So, let us call this z′1 now, what I do is
to concatenate x1 on the left of w2 and, because I can go from w2 → z′1 it also implies that
I can go from x1 ∗ w2 → x1 ∗ z′1 in the same manner and you know by the same logic as
before.

So, I keep applying it to the next um to the next step of the chain and so on . So, I keep
doing this till I reach the very last step and the last step is x2 , but concatenated on the left
by x1 ok. So, what this means is if I start at x1 ∗ w2 by applying left concatenation to the

4

second chain I can reach x1 ∗ x2 ok. So, now I just put these put these together. So, what
have I managed to do? I have managed to start at w1 ∗ w2 . I am following this chain of
rewriting rules. So, at this point this and this are the same now I follow after that this chain
of rules and finally, I reach my destination ok. So, what this means is that w1 ∗w2 is in fact,
equivalent to x1 ∗x2 ok as required. So, what this means is that my um on my group G or at
the moment my set G the um binary operation that have defined is at least it it makes sense
its well defined ok, but we called it G for a reason we are going to make this into a group .

We are going to show that it actually becomes a group under this operation and that is
really our our in some sense our main theorem that is going to be the free group. So, G is a
group under the binary operation that we just defined ok proof well what all do we need to
show we need to show that the binary operation is associative ok. Why is it associative? So,
will show that first observe the definition said if I take [w1] multiplied by [w2] ok, let us just
write out the definition of associativity here. This by definition is [w1 ∗ w2] the equivalence
class of the concatenation multiplied by the equivalence class of [w3] ok which by definition
again is the equivalence class of [(w1 ∗ w2) ∗ w3] ok.

But observe that the what is inside, the representative of the class that I get here is just
the concatenation of these three guys [w1 ∗ (w2 ∗ w3)] and the concatenation operation is
of course, associative. So, I can replace this triple with say [w1]([w2][w3]) and that by the
definition of the multiplication in G will just become this product ok and that is exactly the
the verification of associativity ok.

Now, the identity is also easy. So, there is an identity element what should the identity
element be? Well, so, let us call it e maybe , the identity element of this group G well I
claim its nothing, but you take the equivalence class of the empty word ok. So, that is the

the empty word in words of Ŝ the equivalence class of the empty word by the ways it has
lots and lots of words remember right. So, we um looked at for example, aa′a′a, those basic
rewriting guys they are all. In fact, in the equivalence class of the empty word so this is in
fact, the set of all words which if you keep applying rewriting rules will finally, come down
to the empty word.

The claim is that that serves as an identity again by definition, because the multiplication
just says for any word e, if I multiply it with the equivalence class of the empty word, I just
have to concatenate w with the empty word, but that is just w ok and observe the same logic
holds in the other order. If I hit the equivalence class of the empty word with w on the right
then of course, it gives me w ok. So, in some sense these two properties just follow from the
corresponding properties of the ∗ operation. So, no surprises so far, but the reason we were
doing all this is, because the ∗ does not admit inverses ok, but the important property here
is that this does have inverses ok. In other words it is a group.

So, let us verify this, let us check that given any element of G. I can construct an inverse
of that element with respect to this this new operation that we have defined. So, for a start
let us let us just look at the the two basic generators a and b, the alphabets um if I just
take the single , if I take the equivalence class of the the word a, the question is what is the
inverse of this guy.

So, in other words what equivalence class will you take such that you know what should
I put here. So, that this product gives me the identity element and remember the identity
element just means it is the equivalence class of the empty word ok and observe that well by
definition we already know something . So, let us just throw that in let us let us perform a
simple computation here. So, observe if I take a and I multiply it with the equivalence class

5

of the element a′, then by definition this is the equivalence class of the concatenation . The
word a with a′ which again by definition is just aa′ the word of length 2, but remember aa′

by the rewriting rule is the same as the empty word ok.
So, in other words it says that a equivalence class multiplied by the equivalence class of a′

is in fact, the identity element of this group ok and of course, in the other order as well a′

multiplied by a would also give you identity, you know you can also check that the same is
true of b and b′.

So, this is what I meant when I said in the beginning that you know a prime and b prime
will eventually perform the roles of the the inverses ok. That is only we have only constructed
inverses for these special one letter words if you wish. Ah, What about a general word? That
is that is also very easy. So, let us just do it by example and you will you will see the general
picture very quickly. Suppose, I take the word w = abbaa for example, ok. So, the question
is what should the inverse? So, maybe I should make it slightly asymmetric. So, let me put
two a′s on the end. So, abbaa for example, ok. So, take this word w, I want to know what is
the inverse of this , this word ok.

So, I claim here is a simple prescription , you just look at this this string of letters you
read them in reverse ok and when you read them in reverse you you just change all the a is
to a′ and b is to b′. So, here is the prescription the inverse of w so, let me call it w̄ for now.
This is just read w in reverse and replace any any symbol that you see by its dash ok. So,
maybe I should call it replace each letter by its dash ok. So, in other words here, I I apply
this prescription , I read this in reverse and I see two a′s from the end. So, I make them
dashes I make b′s into dashes . So, heres my claim is that this this new word will serve as
the inverse. So, let us check. So, how should we check by definition this product is just w
concatenated with this new word a′a′b′b′a′ , which as we know is abbaaa′a′b′b′a′. So, here is

6

some some long word, but I claim that if I keep applying my rewriting rules successively I
can convert this word into the the empty word ok.

So, let us just do this sort of right there. So, let me write down this this word and I will
convert it into the the empty word. So, abbaaa′a′b′b′a′ ok. So, let us just do it right right
there. So, I have this pair a and a′ right over here. So, I know that that pair can be erased.
I can make it into the identity into the empty word. So, I erase that from a word ok. Now,
I look at what is left. Now, again in what is left I see that an a and an a′ are paired up. So,
I can erase them ok. Now, I look at what is left, I see that this b and this b′ are paired up.
So, I erase them ok.

What is left the b and this b′ are paired up, this a and this a′ are paired up ok. So, you see
that is exactly how we we constructed the inverse. We just read the word in reverse and for
every symbol we just took its its dash ok and the reason for doing this is, because exactly
this sort of pair wise cancellation is going to happen ok.

And in fact, this is this was just a particular example , but more generally the word can
have dashes as well ok. So, here is the maybe here is another example. So, if I have aba′a for
example, then I claim that the inverse of that equivalence class is just read the same thing
in reverse, but put dashes. If you see a put it put an a′ dash, if you see an a′ you convert
that to an a. So, that is it is in some sense a′ is like an a . So, claim its this element ok and
I leave this for you to check ok.

And it is easy to write a general prescription as well, if you wish that if w is a word
which looks like x1x2....xk each xi ∈ {a, b, a′, b′}, then the inverse of [w] is just given by the
equivalence class of well read in reverse. So, yk and I will change all the x′s → y′s where
what is yi is just the of xi ok. So, this being a bit loose here, but you you know what I mean.
Each xi if it is an a, then yi is a′, if it is a′ then it is an a ok.

7

So, what have we done we have therefore, proved that this group. So, finally, we have
managed to do what we set out to do. We have constructed a group G , with respect to this
this binary operation. So, G with respect to this binary operation is called so definition , this
is called the free group on the two symbols a and b ok. So, observe it is it certainly contains
in some sense the elements a and b and next time, we will start looking at some of its other
properties ok.

For now at least the the motivation for this this terminology, I mean it is not yet fully
clear, but we at least said let us start with a and b, let us not put any relations just sort of
let a and b be arbitrary symbols. Let them generate look at all possible products and so on
and in some sense what we did by this enlargement procedure is to say let us not just take
products of a′s and b′s, let us sort of also take their inverses, let us also throw in two formal
symbols which are like the inverses of a and b and sort of take all possible products, all words
with a in which a′s, b′s are a−1 and b−1 occur ok and in some sense that is really what the
what the free group is capturing ok. So, more on this next time .

	1. Lecture 28 [Free Groups IIb]

