
1. Lecture 27 [Free Groups IIa]

So, last time we started talking about Free Groups, let us keep going. So, what we have
done so far is the very first step which is to construct the set of all words in the alphabet.
So, we are trying to find the free group in two generators S = {a, b}.

So, we said let us look at words of S, which is just the set of all words formed using these
two alphabets and these look like this. There is the empty word, there is words of length
one, words of length two and so on . So, its an infinite set, and the important property was
that this set had an associative operation which we called concatenation of words or putting
two words together. So, this operation was associative and the other important fact is that
it had an identity element which is nothing, but the empty word. But we realize that this
does not, this set words of S with respect to this operation ∗ does not have inverses ok. So,
its not a group and that is the the thing that we will try and remedy in today’s lecture ok.

So, how do we make this a group? The first requirement for a group is inverses and we
notice that no element of of the set has inverses, except for the identity itself which is its
own inverse. None of the others have inverses . In particular a and b these two basic words

1

Algebra - I
Prof. S. Viswanath & Prof. Amritanshu Prasad

Department of Mathematics
Indian Institute of Technology, Madras

2

of length 1 they do not have inverses. So, let us try and and construct inverses or somehow
introduce inverses. And to do this there is sort of one key idea that we use ok which is the
following. Instead of looking at words in this alphabet S, we look at words in an augmented
alphabet ok.

So, what does that mean? I am going to enlarge the set S to make it somewhat bigger.
There is a, b and I will put in two more elements which I will call a′, b′ these will eventually
perform the role of the inverses ok.

But for now think of them as sort of two more alphabets, and we look at the set of all
words in this 4 element alphabet. So, that is well that is still a very large set, its now got
all words in using a, b, a′, b′, its got the empty word, its still got an associative multiplication
and that associative multiplication still does not have inverses ok. So, we have sort of just
replaced the original set words of S by a much larger set in some sets ok. But here comes
the key step. So, we consider this, so that is step 1 . Step 2 is really the key to everything
that we are about to do and this is a construction which will keep coming up in many places,
which is the following; we impose the following relations ok.

So, we impose the following relations what does that mean? Well first let me tell you what
the relations are. So, I want look at the word aa′, this is a word of length 2 in a words of S
hat. This I want to say that this word should be the same ok. So, I will just put the tilde
there to say the same as or equivalent to the empty word ok.

So, I want to similarly make a′a equivalent to the empty word ok. So, I want to somehow
impose these four relations ok. So, notice that at the moment a you know the things that
I have written on the left hand side are all words of lengths 2, and of course, on the right
hand side we have the empty word of length 0 and of course, these are not equal definitely
right now.

But what we want to do, is to somehow say that we want to think of them as being
equivalent ok and not just this, we impose these relations and further what else do we want
to do, we also want to say that we can also replace ok . So, here sort of, I mean think of
these two steps right now as just being some sort of a heuristic idea what it means for a′ and
b′ to perform the roles of the inverses of a and b?

So, at the moment do not think of them you know, do not be too worried about the lack
of rigor, we will make it a little more precise soon. So, heuristically here sort of what we
want to do. We impose these relations and what else do we also want? We also want to do
the following . Whenever we we have a word say we have some long word in this alphabet
a, b, a′, b′ and somewhere in the middle of this word if I find any one of these 4 words of length
2.

So, for example, something something something aa′ followed by a bunch of other letters,
I want to be able to take this word and sort of remove the a a dash from the middle ok. So,
I want to think of it as the same word in which the aa′ block is removed from the middle.
And then so I just take the words to the left of this block and concatenate it with the the
words to the right of this block.

For example so, let us just do this by example . So, I will go to the next page. So, here is
an example . So, if I have for example, abb′a′ab. Now look at this word . When I scan it I
notice that you know that is sort of this bb′ which occurs one after the other. There is also
another a′a which occurs one after the other ok.

So, in fact, there are two reductions here that I would like to be able to do. So, if a′ is
to be the inverse of a then we would want this word to be the same as or to be equivalent

3

to the following word . So, let me make the second a′a into just the the identity, so it just
becomes this.

And now, I can look at this pair or in fact, if I choose I can also look at the the other
pair, let us do the one in the middle if I replace that with the the empty word, then I want
this to just collapse to the word ab ok. So, this is one sort of reduction that I would want
which is what it means to say that a′ and a are inverses of each other b′ and b are inverses of
each other. So, I mean to take a maybe um slightly different example, I can take abb′a′ for
example. And here again I can I would want to think of this word as being equivalent to the
word aa′, and similarly the word aa′ is equivalent to the the empty word ok.

So, what exactly are we we getting at at this point? So, this is really captured precisely
by the notion of an equivalence relation ok. So, if you sort of think a little bit about what
we are doing? Here is what it is. So, what we want to do really is to define an equivalence

relation ok. So, which I will denote by tilde on the set of all words in the alphabet Ŝ ok.
So, here is really what we are trying to do . Now the question is how to rigorously define
such an equivalence relation. So, we have already seen some of the the the requirements. We
have those 4 important identifications. We would want these five words aa′a′abb′b′b and the
empty word to be equivalent to each other ok. So, that is the the primary requirement. And
then the second property here is that whenever any of these occurs as a sub word of a longer
word then inside that longer word you can replace the sub word by any one of these other 4
sub words ok. So, that is sort of what we want to do.

So, let us try and define this equivalence relation in a in a formal manner ok. So, we say
define. So, here is the definition:

Definition: Given two words w1 and w2 in Ŝ , we say or we define w1 is equivalent to w2,
if w2 can be obtained from w1 by a sequence of what I will call the basic rewriting rules.

4

So, let us see what is what is meant by this? So, we have already seen an example of this
just above . So, what is a basic rewriting rule ok, those are just ones that we have talked
about. So, the basic rewriting rules are the following. So, let me say let us ok. So, there are
8 basic rewriting rules. So, what are the rewriting rules, it says suppose I have a word . So,
if there is a word in which aa′ occurs ok and there is something to the to the right. So, this
is maybe its easier to to call these two guys something, so let us call this whatever occurs to
the left of aa′ as the left sub word L .

So, that is again a word in the alphabet and what occurs to the right . So, let us just
delete the dots and call this as L, so some word and what occurs to the right of a prime is R.
So, given a word of this form some word L followed by aa′ followed by some word R. I am
allowed to rewrite. So, this can be replaced with the word Laa′R = LR ok. In other words I
am I am just going to delete the aa′ from the middle. Similarly if I have a word L followed
by La′aR = LR. Again I am allowed to replace that word which is the word LR ok. So, let
us write the other two .

So, when you get, so we say that the word LR is obtained from the original word Laa′R by
using one of the basic rewriting rules ok, so these these are called the basic rewriting rules.
And these are four of them now there are four more which are just the same rules in reverse
ok.

So, not only are you allowed to delete an aa′ or an a′a from a sub word from a word, you
are you are also allowed to introduce that if you want ok. So, here are four rules and the
other four are just the reverses of these . So, given two words L and R, I am allowed to
introduce an aa′ in the middle or I am allowed to introduce ok. So, I am allowed to replace
LR with replaced with this with a with a word whose length is two more ok. So, these are
the 8 basic rewriting rules that I have.

5

So, what are the rewriting rules they are a way of obtaining a new word from a given word
ok. The first 4 rules give you a new word whose length is two less and the next 4 rules give
you a new word whose length is two more ok . Now, using any of these 8 basic rewriting rules
in sequence you are allowed to use them again and again one after the other in any order you
want ok. Now keep doing this and starting from a word w, if w1 if you can somehow obtain
w2 ok.

So, going back to our definition we said w1 ∼ w2 what does that mean? It means I start
with w1 ok, I I see if one of these 8 rules can be obtained, I mean can can be applied . I
mean you can always apply one of the rules, because for example, the rules which allow you
to add two letters in the middle that can be applied to any word if you wish. So, I take w1

I I apply one of my basic rewriting rules and it gives me some word ok. So, I do not know I
should call it something, maybe I get a word z what shall we call it z1 and I take this word
z1 I apply one other basic rewriting rule maybe it gives me a word z2 and on z2 , I apply one
of the rules I get z3 etcetera etcetera . And I keep doing this say at some point again zk and
I finally, apply a rule and it transforms into w2 ok.

w1 → z1 → z2 → z3 →→ zk → w2

So, if you can do this, if you can find a sequence z1, z2, zk; such that this chain from
w1 → w2 proceeds through successive basic rewriting rules, then you declare that w1 ∼ w2

ok. So, I hope the definition is clear, its slightly involved its not may be not kind of equivalence
relation definition which you have seen before , but nevertheless. So, the first order business
let us check that this is actually an equivalence relation on the set ok.

So, let us check is this an equivalence relation check that ok. So, remember equivalence
relation means. I need to check three things I need to check that the relation is reflexive
which means given a word w. I need to check that it is equivalent to itself and that is sort
of trivial, because I just do not apply any of the basic rewriting rules right.

I am allowed to apply you know any number of them, but I am also allowed to apply just
zero number of basically writing rules. In other words I do not apply any rule, or if you
really wish to you know to actually apply a rule you can apply for example, the say the 5th
rule and then follow it up by acting the the 1st rule ok. So, you add in the aa′ and then you
delete the a′ if you wish. So, its in fact, a reflexive operation .

Let us show the other two properties symmetry says that . So, this is a second requirement
of an equivalence relation is that it should be symmetric. So, if w1 ∼ w2 then I need to show
that this means w2 ∼ w1 ok, but again observe this is why we had 8 basic rewriting rules
and not just four the first four. The the rules 5 through 8 are just sort of the rules 1 through
four in reverse right.

So, if if I have say some word w gives me a word x by using one of the basic rewriting
rules. So, let me say if for example, I apply rule 1 to go from w → x, then its clear that I
can get w → x by just applying rule 5 right. If I can get this by deleting a pair aa′ then I
can get the other guy by just putting that pair back right.

Similarly, if I get a word x→ w by applying say rule what was that two then I can go back,
I can undo it by using rule 6 etcetera ok. So, its clear that if I construct a chain going from
w1 → w2 then by applying the rules in reverse I can just get a chain going from um x → w
ok . And 3rd property transitivity is again as easy to check ok. So, if I have a chain which
connects w1 → w2 , chain of rewriting rules and I have a chain of rewriting rules connecting
w2 → w3. All I have to do is just you know apply this first set of rules follow it up by the

6

next set of rules and using that rewriting I can start with w1 , find the chain which takes me
all the way to w3 ok.

So in fact, this somewhat strange definition defines an equivalence relation on the set words

of Ŝ ok. So, that is the the first thing that we have checked ok. So, now let us maybe just
do an example um of of applying the sequence of rewriting rules and so on. So, for instance
let me start with a word that has ab′b ok. So, here is a word a with a is b is a′ and b′ in it
and let me see what I can do by by way of applying my rewriting rules .

So, I already see that there is ab′b right there. So, there are many other pairs which can
be collapsed. For example, there is abb′ here, there is an a′a there, there is an a′a here, there
is an aa′ here and so on.

So, I can of course, apply my rewriting rules um one at a time. So, when I apply my
rule this guy becomes; for example, let me collapse the first pair, so this then becomes
aaa′a′abbb′a′a. Or if instead of the first pair I choose to collapse the last pair a′a, so then
that is like ab′baa′a′abbb′ ok.

Now, so as you can see you can keep going, so I apply, let us see what should we apply
next suppose I collapse this aa′ then it becomes aa′abbb′a′a. Then again here I have other
choices I could have collapsed let us see maybe the the next pair a′a. So, that will give me
aaa′bb and so on. So, this again maybe I collapse the last bb′a and there is ab at the end ok
and so on.

So, you can see that you will sort of form a structure like this and of course, its its its an
infinite um set, the the words you can get from a fixed word by using the rewriting rules,
because I am always allowed to add um you know I can always insert an aa′ or a′a wherever
I want. For example I could take this this original word whatever it is, and maybe just take
a′a at the end ok, I just add one extra a′ here ok and so on. So, you can imagine that its like
this. So, some of these will will eventually become the same meaning this is and so on ok.

7

And in this case as you can probably see from what we we underlined already, if you did
the all possible collapsings to the maximum extent I have b′b is gone, aa′ is gone, a′a is gone,
bb′ is gone, this is gone. So, finally, after all this you will see that you will sort of get the
word ab ok.

So, that is going to be a word which will which will eventually arise when you keep doing
this. And in some sense that is the smallest words the the the smallest the maybe you should
call it the the the word of smallest length or sometimes its called the reduced word and so
on. But here is a nice exercise um you know for you to play with, just try to see what more
um you know try to write down a bunch of other words that you can construct which can all
be obtained one from the other by a sequence of rewriting rules ok.

Now, our definition of the equivalence relation what it says is that for example, all the
words that you see now on the page are all in fact, equivalent to one another ok why is that
because no matter where I am. So, for example, if if I have this word here, this word here is
actually equivalent to this word here ok. These two words are equivalent why because what
is the definition say I should be able to go from one to the other by applying one of my basic
rewriting rules .

So, here is what I do I first go up like this ok. So, going from here to here involves insertion
of a pair aa′ and then from there I reach this word which again was obtained by insertion
and then I go down like this, where this word is obtained from the word on top by deletion of
some pair and then I reach this point ok. So, no matter where I am I can always start there
and reach any other point in this collection of words, either by using insertions or deletions
of pairs aa′ ok. So, this entire collection is in fact, equivalent. Everything here is equivalent
to everything else and this what we mean by an equivalence class is more or less this this
idea here .

8

So, recall that when I have an equivalence relation. So, an equivalence relation always
divides or partitions is the right word, and equivalence relation partitions the set, the under-
lying set, partitions the set into a collection of disjoint into a collection of disjoint what are
called equivalence classes. So, this is disjoint equivalence classes ok. So, it partitions the set
in this case the set itself is nothing, but the set of all words ok, where what is an equivalence
class.

So, here is if you recall the definition. So, suppose I pick a word w I will denote by this
square bracket [w] the equivalence class. So, let us use this to denote the equivalence class to
which w belongs. So, this is the equivalence class of [w] which by definition is just nothing,
but the set of all words:

[w] = {x ∈ word(Ŝ)|w ∼ x}
I mean collect every word which is equivalent to w that collection is is called the equivalence
class of w. And of course, what this is is a subset , this is a subset of the set of all words in

Ŝ ok.
And now, here is the important definition for S. So, let us call this set G is just a set of

all equivalence classes, so G is the set of equivalence classes ok for this equivalence relation
tilde that we have just defined. Just take the collection of all equivalence classes. In other

words the elements of G are themselves subsets of of words of Ŝ ok.
Now, look at the collection of equivalence classes and observe that, so one way of writing

its to say its the set of all w, as w varies over set of all words in Ŝ, but note that you know if
I take an equivalence class of [w]. So, w sometimes you know when we denote an equivalence
class in this manner what we are really doing is, picking one representative w from that
equivalence class, but note that the following is true if I picked another element x from the
same equivalence class. So, I pick an element x from the equivalence class of [w], then the
equivalence class.

9

So, for all x in the equivalence class of [w], the equivalence class of x is just the same as the
equivalence class of [w] ok. In other words the same equivalence class in this case this you
know either of these two sides they represent the same equivalence class, but the elements
that you pick to represent it which in this case are w and x can very well be different ok .
So, that is something to always keep in mind when one is dealing with equivalence classes
ok.

Now, here is the very interesting observation that the way we have defined the the equiv-
alence relation this collection G also has a well defined. So, G has a well defined a binary
operation, basically a multiplication operation given by . So, here is the definition remember
elements of G are themselves equivalence classes. So, I take the equivalence classes of class
of [w1] and here is this dot denotes the binary operation the multiplication I am going to
define on G. So,

[w1] · [w2] := [w1 ∗ w2]

So, observe the the definition itself at the moment makes sense, I take two equivalence
classes [w1] and [w2], I take two representatives w1 w2 from those classes. I I concatenate
those two representatives I get a new word w1 ∗ w2 and I take the equivalence class of that
new word ok that is my definition.

Now, the key thing that one needs to prove is really well definedness ok. The key point
here is that this definition is well defined and why does one need to worry about that because
we are picking representatives from these classes w1 and w2 if .

So, its not a priori clear that suppose I changed my representative. So, here is what we
will need to show what if I pick different representatives. So, if x1 is another representative
it belongs to this equivalence class ok and I pick a different representative x2 from the
equivalence class [w2] ok. Then so, what does that mean? I have instead of taking w1 as my

10

representative I am thinking of x1 as my representative of that class and similarly ok. So, I
am I am changing my representative then. So, suppose I do this, then I need to show that
my right hand side will be the same answer whether I do [w1 ∗w2] and take the concatenation
or I take [x1 ∗ x2] and and take their concatenation, the answers should be the same. its ok.
Then um we need ok we must show that x1 ∗ x2 the equivalence class is the same answer
as what you would get if you took w1 ∗ w2 ok. So, this is what showing well definedness
means ok. So, let us prove this. Again it it comes about from the special way in which the
equivalence class or the equivalence relation was defined.

So, observe what are we given we given that x1 and w1 are equivalent to each other. So,
let us prove this given what is given is the following these two are equivalent and what we
need to prove is that the concatenations are equivalent x1 ∗ x2 ∼ w1 ∗ w2 ok. So, what is
equivalent mean? It means there is a chain starting with w1 ending at x1 in which each
intermediate step is obtained from the preceding one by an application of a basic rewriting
rule ok.

So, let us write that down. So, step 1; I started w1 ok and I use my basic rewriting rule,
I get some word , I use again one of the other rules it becomes some other word, etcetera
etcetera till I finally, am able to reach x1 ok. This is what it means to say w1 and x1 are
equivalent to each other ok. Similarly, I have w2 and x2 . So, I can start at w2 , I can follow
my rules successively till I reach well ok. So, that is what the definition says.

Now, given this we need to show that if it start with w1 ∗ w2 , I can reach x1 ∗ x2 by means
of my basic rewriting rules ok. Now, the way we do this is just via this simple observation
that look at this this initial chain, starting from w1 and going to x1 . What does the basic
rewriting rule do ? The basic rewriting rule has the following form. So, for instance if this
is my word w1 , I look through the letters in w1 , I either find a successive pair of the form
aa′ etcetera which I delete or I take my word w1 . I look through the letters, I pick some

11

position and there I insert a pair aa′ ok. So, the transformation that I perform has this very
specific form. You either collapse or you sort of expand at a certain location in the word.

So, if if I go from let us look at the very first step of the chain I go from w1 to whatever
is the next word in the sequence by means of some basic rewriting rule then here is what it
means, it means that look at w1 and the next guy . Now, to w1 on the right hand side, I can
let me try doing this. Let me concatenate w1 on the right hand side with the word w2 ok
and the next step in the chain I will do the same thing to it. I concatenate w2 to that word.

Now, if this second guy can be obtained from the first one by some basic rewriting rule,
then it follows that w1 ∗ w2 will lead to that word x1∗ w2 ok. I can take the second guy
and I do w2 to it. So, maybe I should give this give this a name . So, this intermediate step
suppose, I call it z1 that is my word, then here is what I mean that if from w1 to z1 I can go
by means of a basic rewriting rule. I can also go from w1 ∗ w2 → z1∗ w2 by the same rule
really ok, because I only need to apply that rule to the w1 portion of my word now and so
on.

So, the next step again, because I can go from z1 to the next fellow z2 by means of some
rule, it means I can also go from z1∗w2 → z2∗w2 by using the same rule, but only applying
into the z1 portion and so on ok. So, keep doing this till you reach the end. So, the end here
is x1 , but of course, remember I have starred every one of them with the w2 ok.

So, I have started at w1 ∗ w2 which is what I need to start with ok. So, we have managed
to go from w1 ∗ w2 which is what we wanted, but we have only reached x1 ∗ w2 ok, but
that is already a very good start, because now we do the same thing with the with the other
sequence. We know that we can start at w2 and reach x1 . So, now let us do the same thing
here this implies. Now, I will sort of concatenate on the left of w2 . So, starting at at w2 , I
can reach the next step whatever this this word is. So, let us call this z′1 now, what I do is
to concatenate x1 on the left of w2 and, because I can go from w2 → z′1 it also implies that

12

I can go from x1 ∗ w2 → x1 ∗ z′1 in the same manner and you know by the same logic as
before.

So, I keep applying it to the next um to the next step of the chain and so on . So, I keep
doing this till I reach the very last step and the last step is x2 , but concatenated on the left
by x1 ok. So, what this means is if I start at x1 ∗ w2 by applying left concatenation to the
second chain I can reach x1 ∗ x2 ok. So, now I just put these put these together. So, what
have I managed to do? I have managed to start at w1 ∗ w2 . I am following this chain of
rewriting rules. So, at this point this and this are the same now I follow after that this chain
of rules and finally, I reach my destination ok. So, what this means is that w1 ∗w2 is in fact,
equivalent to x1 ∗x2 ok as required. So, what this means is that my um on my group G or at
the moment my set G the um binary operation that have defined is at least it it makes sense
its well defined ok, but we called it G for a reason we are going to make this into a group .

We are going to show that it actually becomes a group under this operation and that is
really our our in some sense our main theorem that is going to be the free group. So, G is a
group under the binary operation that we just defined ok proof well what all do we need to
show we need to show that the binary operation is associative ok. Why is it associative? So,
will show that first observe the definition said if I take [w1] multiplied by [w2] ok, let us just
write out the definition of associativity here. This by definition is [w1 ∗ w2] the equivalence
class of the concatenation multiplied by the equivalence class of [w3] ok which by definition
again is the equivalence class of [(w1 ∗ w2) ∗ w3] ok.

But observe that the what is inside, the representative of the class that I get here is just
the concatenation of these three guys [w1 ∗ (w2 ∗ w3)] and the concatenation operation is
of course, associative. So, I can replace this triple with say [w1]([w2][w3]) and that by the
definition of the multiplication in G will just become this product ok and that is exactly the
the verification of associativity ok.

Now, the identity is also easy. So, there is an identity element what should the identity
element be? Well, so, let us call it e maybe , the identity element of this group G well I
claim its nothing, but you take the equivalence class of the empty word ok. So, that is the

the empty word in words of Ŝ the equivalence class of the empty word by the ways it has
lots and lots of words remember right. So, we um looked at for example, aa′a′a, those basic
rewriting guys they are all. In fact, in the equivalence class of the empty word so this is in
fact, the set of all words which if you keep applying rewriting rules will finally, come down
to the empty word.

The claim is that that serves as an identity again by definition, because the multiplication
just says for any word e, if I multiply it with the equivalence class of the empty word, I just
have to concatenate w with the empty word, but that is just w ok and observe the same logic
holds in the other order. If I hit the equivalence class of the empty word with w on the right
then of course, it gives me w ok. So, in some sense these two properties just follow from the
corresponding properties of the ∗ operation. So, no surprises so far, but the reason we were
doing all this is, because the ∗ does not admit inverses ok, but the important property here
is that this does have inverses ok. In other words it is a group.

So, let us verify this, let us check that given any element of G. I can construct an inverse
of that element with respect to this this new operation that we have defined. So, for a start
let us let us just look at the the two basic generators a and b, the alphabets um if I just
take the single , if I take the equivalence class of the the word a, the question is what is the
inverse of this guy.

13

So, in other words what equivalence class will you take such that you know what should
I put here. So, that this product gives me the identity element and remember the identity
element just means it is the equivalence class of the empty word ok and observe that well by
definition we already know something . So, let us just throw that in let us let us perform a
simple computation here. So, observe if I take a and I multiply it with the equivalence class
of the element a′, then by definition this is the equivalence class of the concatenation . The
word a with a′ which again by definition is just aa′ the word of length 2, but remember aa′

by the rewriting rule is the same as the empty word ok.
So, in other words it says that a equivalence class multiplied by the equivalence class of a′

is in fact, the identity element of this group ok and of course, in the other order as well a′

multiplied by a would also give you identity, you know you can also check that the same is
true of b and b′.

So, this is what I meant when I said in the beginning that you know a prime and b prime
will eventually perform the roles of the the inverses ok. That is only we have only constructed
inverses for these special one letter words if you wish. Ah, What about a general word? That
is that is also very easy. So, let us just do it by example and you will you will see the general
picture very quickly. Suppose, I take the word w = abbaa for example, ok. So, the question
is what should the inverse? So, maybe I should make it slightly asymmetric. So, let me put
two a′s on the end. So, abbaa for example, ok. So, take this word w, I want to know what is
the inverse of this , this word ok.

So, I claim here is a simple prescription , you just look at this this string of letters you
read them in reverse ok and when you read them in reverse you you just change all the a is
to a′ and b is to b′. So, here is the prescription the inverse of w so, let me call it w̄ for now.
This is just read w in reverse and replace any any symbol that you see by its dash ok. So,
maybe I should call it replace each letter by its dash ok. So, in other words here, I I apply

14

this prescription , I read this in reverse and I see two a′s from the end. So, I make them
dashes I make b′s into dashes . So, heres my claim is that this this new word will serve as
the inverse. So, let us check. So, how should we check by definition this product is just w
concatenated with this new word a′a′b′b′a′ , which as we know is abbaaa′a′b′b′a′. So, here is
some some long word, but I claim that if I keep applying my rewriting rules successively I
can convert this word into the the empty word ok.

So, let us just do this sort of right there. So, let me write down this this word and I will
convert it into the the empty word. So, abbaaa′a′b′b′a′ ok. So, let us just do it right right
there. So, I have this pair a and a′ right over here. So, I know that that pair can be erased.
I can make it into the identity into the empty word. So, I erase that from a word ok. Now,
I look at what is left. Now, again in what is left I see that an a and an a′ are paired up. So,
I can erase them ok. Now, I look at what is left, I see that this b and this b′ are paired up.
So, I erase them ok.

What is left the b and this b′ are paired up, this a and this a′ are paired up ok. So, you see
that is exactly how we we constructed the inverse. We just read the word in reverse and for
every symbol we just took its its dash ok and the reason for doing this is, because exactly
this sort of pair wise cancellation is going to happen ok.

And in fact, this is this was just a particular example , but more generally the word can
have dashes as well ok. So, here is the maybe here is another example. So, if I have aba′a for
example, then I claim that the inverse of that equivalence class is just read the same thing
in reverse, but put dashes. If you see a put it put an a′ dash, if you see an a′ you convert
that to an a. So, that is it is in some sense a′ is like an a . So, claim its this element ok and
I leave this for you to check ok.

And it is easy to write a general prescription as well, if you wish that if w is a word
which looks like x1x2....xk each xi ∈ {a, b, a′, b′}, then the inverse of [w] is just given by the

15

equivalence class of well read in reverse. So, yk and I will change all the x′s → y′s where
what is yi is just the of xi ok. So, this being a bit loose here, but you you know what I mean.
Each xi if it is an a, then yi is a′, if it is a′ then it is an a ok.

So, what have we done we have therefore, proved that this group. So, finally, we have
managed to do what we set out to do. We have constructed a group G , with respect to this
this binary operation. So, G with respect to this binary operation is called so definition , this
is called the free group on the two symbols a and b ok. So, observe it is it certainly contains
in some sense the elements a and b and next time, we will start looking at some of its other
properties ok.

For now at least the the motivation for this this terminology, I mean it is not yet fully
clear, but we at least said let us start with a and b, let us not put any relations just sort of
let a and b be arbitrary symbols. Let them generate look at all possible products and so on
and in some sense what we did by this enlargement procedure is to say let us not just take
products of a′s and b′s, let us sort of also take their inverses, let us also throw in two formal
symbols which are like the inverses of a and b and sort of take all possible products, all words
with a in which a′s, b′s are a−1 and b−1 occur ok and in some sense that is really what the
what the free group is capturing ok. So, more on this next time .

	1. Lecture 27 [Free Groups IIa]

