
1. Lecture 23 [Sylow theorem III]

Let us prove the third Sylow theorem. So, this is the last of the Sylow theorems part 3.

Theorem 1.1 (Sylow Theorem 3:). Le G be a finite group of cardinality |G| = pdm, where 
p is a prime and d ≥ 1, m ≥ 1. The number of distinct p-Sylow subgroups of G is congruent 
to 1 modulo p.

and the notation is more or less what we used in all the earlier theorems as well earlier 
parts of the theorem that we assume p divides the cardinality of the group. let us prove with 
third Sylow theorem . Now, this again involve some some very interesting ideas and as before 
it uses the the set X that we have been looking at repeatedly . So, here is the proof .

So, let us go back to the action of G on itself . So, G acts on itself by just left translation 
. So, recall we used both left and right translations in the earlier proof of Sylow 2 . Now, 
we will go back to just the left translation . So, G acts on it itself by left translation and 
therefore, by the action on subsets G acts on the set of all subsets of G of cardinality pd and 
we called the set Ppd (G) = X.
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And again to recall the the key property of X was that it was it had a cardinality which
was not divisible by p. And for this Sylow theorem 3 we will recall one additional fact about
X . We actually knew a little bit more about the cardinality of |X| further recall

|X| ∼= m(mod p)

So, this this little fact has never been used in it is full power until now. We only use the fact
that the cardinality of |X| is not divisible by p, we have never used the exact congruence
modulo p that the cardinality satisfies ok . And since of course, this particular statement
here in Sylow 3 is a statement about something being congruent to something modulo p I
will turn out that this is exactly the fact that that will play a role ok. So, let us move on
. So, observe that this set X that we keep talking about is actually interesting for the the
following reason .

So, what is this set X really. So, the set X let us draw a picture of the set X it is the set
of all subsets . So, what what are elements of X ? So, it is X is nothing, but all subsets of G
whose cardinality is pd . And so in particular the p Sylow subgroups that we are looking at
the H or K that appeared in the earlier one. So, any p Sylow subgroup for example is in fact
an element of X . So, let me let me give them names. So, let us say that let let us assume
that the p Sylow subgroups are the following H 1, H 2 till some number H s be the distinct
p Sylow sub groups .

So, recall by the second Sylow theorem we know they are all conjugates of each other . Be
the distinct p Sylow sub groups of G and so in fact they are all elements of of the set X .
So, H1 the subgroup is somewhere in X . So, maybe we will just put them in different colors
. So, I have H2 another subgroup and so on till I finally get my subgroup hs just write here
. So, this is a last subgroup Hs ok . Now, um Hs ok.
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Now, here are some subsets of cardinality pd no doubt . Now, let us do the following let
us ask the following question since they are all elements of X after all what do their orbits
look like. So, recall the set X is a G-set. It is got an action of the group G the action on
subsets right . So, recall what is the action ? G acts on X.

Again worth recalling once more

g · A = {ga|a ∈ A}
. So, in particular we can ask well look at these p Sylow sub groups and let us ask what are
their orbits under this action ok .

So, take the p Sylow sub group Hi for example, or let us start with the H1 is an element
of X . It is a subset of carnality pd . So, it is a valid question to ask what is the orbit of this
point. This this you know it is now just a single point in the set X . So, what is its orbit
under the group action? Well, by definition this is just going to be all elements of the form
uh gH1 ok .

Orbit(H1) = {g ·H1|g ∈ G} = {gH1|g ∈ G}
= {left coset of H1}

So, what is this? The sets the subsets you get in this way are exactly the left cosets . In
other words, these are just the left cosets of the set H1 ok . So, this is an first interesting
fact here that when I look at H1 it is orbit under the group is just going to be it is various
left cosets . So, let me just mark them here . So, these are the various left cosets of H1 ok.
So, various gH ones . So, this is the orbit of H1 ok. Now, uh let us move on to H2 now.
So, observe H2 is not in this orbit ok. This this H2 being a distinct p Sylow sub group. So,
note that in in the orbit of H1 what you have are H1 and its various cosets. Among these so
observe a coset can never be a subgroup except for the the identity coset meaning the coset
of the original subgroup itself.
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All the other guys are not sub groups they are not closed under multiplication . So, this
guy is the only subgroup here and since H2 is assumed to be different from H1,H2 cannot
cannot live inside this orbit right it . The only subgroup among these cosets is the one that
I have shaded. And so if at all H2 lives in this orbit it has to equal that guy, but H2 is not
equal to H1 ok. So, observe H2 is not in the orbit of H1. So, that is all I am I am trying to
say here. So, observe H2 is in a separate orbit ok. So, look at orbit of H2 . What is that?
Well, by the same token this is just the set of all left cosets of H2 and so on . So, you keep
going this way.

So, you observe that at every step the orbit of . So, these these left cosets here. This is
the orbit of H2 under the group action and so on till you reach the very end and the orbit of
Hs will just be its left cosets ok . Because, that is the last orbit ok and these are all disjoint
I mean they are all more or less by definition of orbits they are all disjoint sets. So, I have I
have produce some number of elements of the set X ok.

So, let us write X separately here again . So, X is my my ambient set ok on which the
action takes place ok . Now, so what have we done so far we have produce some elements
of X or rather we have produce some orbits inside the set X . Now, how many elements of
X are accounted for in this way ok. In other words, how many elements are there in each
orbit? What is the cardinality of each orbit ? So, observe so and so on. So, this holds all
the way till orbit of the last guy he is just going to give me the set of all left cosets of Hs ok
. Now, observe we know how many left cosets there are of of any subgroup right.

So, observe that the cardinality of the orbit of any one of the Hi is by,

|Orbit(Hi)| = #of left coset of Hi

So, let us go back to our picture of X . So, what does that mean it means that there are
m elements here . So, the cardinality of this set is m, the cardinality of this set is m , the
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cardinality of the last every one of them is m ok and there are s of them. So, there are you
know how many total elements of X are accounted for in these orbits there are ms elements
that lie in these s orbits ok .

Now, let us look at the other elements of course, this does not exhaust all the elements of
X because these are all very special subsets of cardinality pd. These are either the p Sylow
sub groups themselves or their left cosets ok. So, these are some very very special kinds of
subsets of cardinality pd , but the of course, there will be lots of other random subsets right.
So, there are many many other subsets here of cardinality pd in in the group G . So, of
course, I have to look at all of them next ok. So, let us look at any one such guy. So, let me
pick some not so special subset a which is not of this form and ask .

So, here is a subset of cardinality pd I can ask the same question what is its orbit going to
look like ok. Again a very very interesting question if I take a random element of cardinality
random subset of cardinality pd and ask what is its orbit under the action of the group. In
other words, if I keep hitting it on the left by different group elements it produces new subsets
of cardinality pd .

What can I say about that orbit how many new subsets will I produce for example. These
p Sylow guys are very nice and regular in the sense that we know exactly what you will get
when you you know what their orbit looks like when you keep left multiplying these sub
groups by elements of G you just produce the different cosets ok.

But, if a is not a subgroup for example, then it is not clear it is it is somewhat trickier it
is not so easy to figure out what happens ok . So, I want to now next try and understand
what is the Orbit(A) look like ok. So, what is A now. So, let us pick . So, I want to say now
consider ok. So, let us let us just note this this fact down as well. The sum of the orbits of
these H is orbit cardinalities for these guys is m times s ok. So, so many elements are are
nice in some sense ok . So, this is done now let us move on to the other orbits ok . Next let
us pick suppose A ∈ X in other words i e A ⊆ G of cardinality pd and A is not in any of
these orbits and A is. So, how should I write it A does not belong to the orbits that we have
already looked at ok.

A 6∈ ∪si=1Orbit(Hi)

What does that mean ? i e A is not a left coset of a p Sylow subgroup ok . This is my this
is now my assumption on A that it is not a left coset of a p Sylow subgroup . Now, under
this assumption I want to ask what can I say about the cardinality of the orbit of A ok and
here is my claim here is an important observation for all such A the cardinality of the orbit
is divisible by p . This is the important claim.

Observe this does not hold for the the other nice orbits that we have already looked at .
So, the orbits that we have looked at their cardinalities what was the cardinality was m right
. So, these are the the cardinalities of the the p Sylow subgroups .

So, those guys have orbit cardinalities which are not divisible by p because m is of course,
not divisible by p by assumption. But, if you are not one of these nice orbits any other orbit
has cardinality which is a multiple of p ok. So, that is our claim ok . So, let us prove the
claim first . So, proof of claim . Well, as always we will use the counting formula. If you
want to understand how many elements there are in a given orbit you will have to understand
what the stabilizer looks like ok. So, let me just called this the stabilizer of A ok . So, what
is the stabilizer of A ?
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So, let me give that a name . So, let L denote the stabilizer of a it is a certain subgroup
remember the stabilizer is always a subgroup . What is it? It is a set of all group elements
which stabilize A. In other words, when you hit it on the left I mean when you act it on A
you should get back in ok . So, this is the the definition of the stabilizer . All those elements
of the group such that you take A, you hit it on the left by g, you still get back the same set
A.

L := Stab(A) = {g ∈ G|g · A = A}
I mean of course it can permute the elements of amongst A, but you should you should just
get back the set A again. It should not take an element of A and move it to an element that
is outside A ok .

So, this is the this is the property of the I mean this is the definition of the stabilizer . So,
let us try and understand what the relationship is between A and its stabilizer ok. So, let
me draw the set A now . So, maybe I will draw it the way I did in the the inside the set X .
So, suppose my set a looks like this like a diamond. So, let us say this is my set A ok . Now,
let us do the following. Let us pick an element a ∈ A . So, let us pick an element first a ∈ A
ok . So, take some element. So, I have taken some elementA. Now, look at this stabilizer.
So, what is the stabilizer? The stabilizer is A is a certain subgroup with this property ok .

Now, observe if I take an element. So, consider the right coset La ok. L is a subgroup,
a is an element I can look at the right coset La . What is this? This is just all elements of
the form la where l comes from L ok, but observe that La. So, according to this formula if
I take an element of A I mean according to this definition if we take an element of A and
multiplied by an element from the stabilizer the answer should again be inside A .

So, observe that every element of the form La must again be inside A by definition of the
stabilizer ok . So, what is that mean I take A and if I look at this left coset L a well that
entire thing is a subset of A. So, as soon as an element belongs to A it is entire right coset
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of La belongs to A ok . So, this entire thing is there ok . Now, we keep going suppose this
exhausts A, then we are done. If not there is another element inside A ok . So, maybe we
should call this a1 pick an element a1 ∈ A . If la1 6= A stop otherwise look for an element a2
which is not in la1 which is an A ok. Apply the same reasoning. So, pick a2 ∈ A .

So, if La1 is not the whole set A pick a2 ∈ A, but not in la1 and now again by the same
reasoning conclude that la2 is also a subset of A ok . Again by the definition of the stabilizer.
So, this this entire coset la2 is inside A and so on.

So, you keep going that way till you observe that as soon as some element is there it is
entire right coset is there ok which means finally, this process has to stop because everything
is a finite set . And finally, when this process stops what would you have obtained you would
have realized A as a union A can therefore, be written as a union of some right cosets of L
right .

Some finitely many right cosets of L. They are all disjoint necessarily that union of those
many some finitely many of them should give you the set A ok . So, this is just we are just
applying the definition of the stabilizer ok and the action on subsets. So, what does that
mean in particular.

It says in particular this means that the cardinality of A has to equal cardinality of L times
the number of right cosets which are contained the number of right cosets which of L which
are contained in A . In other words, this means that the cardinality of L whatever it is must
divide the cardinality of A ok because this is some number of course.

So, it means that the left hand side is A multiple of the cardinality of L ok, but observe
the cardinality of A was pd to begin with. So, what this means is therefore, the cardinality
of L must also be some of a prime. It must look like some pj where 0 ≤ j ≤ d ok . So, we
have concluded that the stabilizer is also p group, but observe that, but the key point here
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is that L cannot have cardinality pd, but observe that j cannot equal d ok . This maximum
value is not allowed.

Why not because of the following reason . If j equals d because if j equals d then what
that means is that L has cardinality pd which means if you look at the the earlier or look at
this this equation here the cardinality of |A| = pd the cardinality of |L| = pd which means
that there should be exactly 1 right coset of L which is contained in A ok . So, what that
means is that I mean or if you look at this earlier picture the at the very first step the very
first right coset that you form that already exhausts the entire set A because the cardinality
of that right coset is already pd ok. So, what this means is that A looks like this.

Its just a single right coset just La1 alone will do the job the very first one will do the job
ok . So, A is a is a single right coset and L remember has cardinality pd . So, what does that
mean? Well, it means L ofcourse is therefore a p Sylow subgroup and A is a right coset of
a p Sylow subgroup. But, observe that because of Sylow theorem number 2 here something
we can do. Let me rewrite this as follows a1(a

−1
1 La1) ok . So, I will write this as a1 times

this guy here is just a conjugate of L′ is is is a conjugate of L. So, I will call this L′ maybe
ok . So, what is L′? L′ dash is another subgroup whose cardinality is pd ok. So, what have
I finally, concluded. I have concluded that my set A is therefore, a left coset of a p Sylow
subgroup ok .

So, well because you know all these p Sylow subgroups are I mean conjugate of a p Sylow
subgroup is a p Sylow subgroup. So, the right coset of a p Sylow subgroup is also the left
coset of a different p Sylow subgroup that is all we are saying here ok. Now, but that recall
is a contradiction because we assumed to begin with that the set A was not where was this
assumption. We assume that A is not a left coset of a p Sylow subgroup. It was such an a
that we are looking at . So, if j = d; however, we conclude that A does look like that. A has
to have that form ok. So, this contradiction.
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This contradiction implies that our assumption was wrong j < d has to be strictly smaller
than d cannot equal d . But, if j is strictly smaller than d well what does that mean cardinality
of |L| = pj recall . So, j is strictly smaller than d therefore, the orbit cardinality the orbit
of the set A that we looked at its cardinality looks like cardinality G by the cardinality of
the stabilizer which is pd−j which is some strictly positive power of p ok. So, this is this is
divisible by p because this d − j > 0 . So, p therefore, divides the orbit cardinality ok as
required as claim. So, this proves our claim ok. So, let us take stock. Where are we now?
We have gone back to our let us go back to this picture that we drew right in the beginning.
So, we have the set X . We have these nice regular orbits ok which are the cosets of Sylow
subgroups and then we have sort of all these other irregular orbits .

Now, these orbits are orbits of other subsets A which are not uh cossets of Sylow subgroups
and what we have just shown is that this orbit you know the the the different the number of
subsets that you get . So, this orbit cardinality is divisible by p . So, p divides the cardinality
of this orbit ok and the same holds for the other subsets as well.

So, if I pick some other arbitrary subset A which is not in this orbit and I look at its orbit
you know how many other subsets are obtained by left translating this by G that orbit again
will have cardinality which is a multiple of p and so on ok ok . So, finally where does this
this lead us . So, now, let us look at this big subset X and ask how many elements are there
in X . So, there are these 2 types of elements. On the one side, we said that these nice orbits
they account for m s elements, but the total size of X . So, now, let me compute the total
size of X which is these nice orbits and these not so nice orbits .

So, observe now the cardinality of |X| = ms. So, these come from the nice orbits left
cosets of Sylow subgroups and so on plus these other orbits.

|X| = ms +
∑

Oi|Oi|
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. So, let me just call it Oi for now where what is Oi. O′is are these not so nice orbits. If you
wish whose cardinalities are divisible by p .

So, this is orbits of subsets A which are not left cosets which are not left cosets of p Sylow
subgroups . So, these are the not so nice orbits and so what this gives us is ms plus what we
have here we have just shown is divisible by p right . So, this is a multiple of p. Each orbit
here is has cardinality which looks like p time something .

So, the net answer is congruent. So, this this part is divisible by p . So, I can ignore it when
I am looking at congruence modulo p. So, I conclude that the cardinality of |X| ∼= m(mod p)
is therefore, m ∼= ms(mod p) where s is the number of Sylow subgroups ok. But, observe we
already know something, but we know and this is the fact I recall right in the beginning that
the cardinality of |X| by our other arguments is already congruent to m modulo p ok.

So, therefore, we conclude that the number m and ms had better be congruent to each
other modulo p . And well we are almost there you can observe if you cancel the m from both
sides it implies that s ∼= 1(mod p) Ok and so that is the end of the proof . Just a little aside
on this this cancellation of m. So, remember I can cancel m because m is not congruent to 0
modulo p ok . If m is not divisible by p, I can cancel m from both sides of a congruence and
why is that because. So, recall what is given is this I know I am given that ms is congruent
to m modulo p . This just means that their difference ms−m is divisible by p. This is what
a congruence means . But, this means in particular that p divides m(s− 1) and if p divides
a product.

But, recall when p divides a product, but p does not divide one of the terms right. This
this factor m has no powers of p in its prime factorization then it means that p must divide
the other term that is the only way out. In other words, s must be congruent to 1 mod p ok.
So, this is just a little proof of why cancellation is is valid ok .
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So, again so to to broadly summarize the idea of the proof here it it again comes back to
the to the very same thing as as before this this action on cosets is what we we study here .
So, the key point is really in understanding this this figure here on this on the screen which
is when you look at all the subsets of X and you look at the left translation action on subsets
the Sylow subgroups and their cosets they form a bunch of nice regular orbits ok .

Each orbit has cardinality m and if there are s Sylow subgroups the total total number is
ms and then all the other orbits are the not so nice orbits which are orbits of subsets a which
are not of this form, but those orbits all have cardinalities which are divisible by p ok. So,
all those orbits will be divisible by p whereas, each of these orbits are are are not divisible by
p and and then that coupled with the what we know about the cardinality of X completes
the proof ok .
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