
1. Lecture 19 [Sylow Theorems I]

Today we will continue talking about the Sylow theorems. So, we still have not actually 
stated any of the Sylow theorems. But recall from last time that we stated the following 
proposition B which was motivated by our understanding of how p-groups acts act on sets 
whose cardinalities are co primed p ok. So, this was the converse to that p-group acting with 
fixed points proposition .

So, we had called it proposition B last time. So, let me just recall the statement in the 
contra positive form.

Proposition 1.1. Let us say suppose I have a group G whose cardinality is divisible by p, 
but suppose G is not a p-group ok, then you can construct a finite G-set X, such that p does 
not divide the cardinality of X and such that there are no fixed points XG 6= ∅.

ok.
So, this is the in some sense, a statement about the existence of fixed point free actions 

with also satisfying that cardinality co prime to p condition ok and these are the blanket
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assumptions G and X are always finite, p is some fixed prime number ok. Now, this is going
to somehow be our our starting point for the first Sylow theorem. So, let me state what is
called Sylow theorem number 1 Sylow theorem I ok. What does it say?

Theorem 1.1 (Sylow Theorem 1). Let |G| = pdm such that d ≥ 1,m ≥ 1. Then there exist
a subgroup H of G such that |H| = pd.

It says let G be a finite group whose cardinality is divisible by p So, same assumption as
above. So, I will assume that the cardinality of G is of the form pdm. So, I am assuming the
cardinality is divisible by p so, I will say d the power d is at least 1 and heremis at least 1
ok. So, let G be a finite group whose cardinality is divisible by p that is all the statement is
saying. Then, the Sylow theorem says that there exists a subgroup H such that cardinality
of His exactly p power d. So, take the maximum power of p which divides the cardinality
of a group, you can find a subgroup of that exact cardinality ok. So, this is this celebrated
theorem statement is called Sylow theorem number I and it will turn out that in some sense,
this statement here is actually equivalent to proposition B ok. So, this is; this is the in fact,
what we will talk about today ok. So, I will at least establish one side of the the equivalence
and leave the other T.

So, let us prove the Sylow theorem. So, we have already proved proposition B. Let us use
proposition B to show how the first Sylow theorem follows ok. So, let me prove proof of this
Sylow theorem. So, first observe that if G is already a p-group; if G is a p-group what does
that mean?

It means that G the cardinality is already a power of p in other words, the number m = 1,
then this is trivial, the assertion is trivial I just take H = G itself ok and so, the theorem is
done, I mean the proof is done there is nothing to do ok, so done .

Otherwise , in other words, if m is at least two or in other words, there are other primes
which divide the cardinality of the group , then let us use proposition B ok, now we are in
the setting of proposition B which says that if a prime divides a cardinality of a group, but
G is not a power of that prime. The cardinality of G is not a power of that prime , then I
can manufacture a fixed point free action whose cardinality or fixed point free action on a G
set whose cardinality is not divisible by p, ok.

So, otherwise ok so, now, let us use proposition B to conclude the following use proposition
B or let us write it as using proposition B by proposition B there exists a G-set X with two
properties such that p does not divide the cardinality and there are no fixed points , ok.

Now, what does this get us? Here is the first observation. So, suppose I have a set X on
which the group X recall that there are the the action of the group splits this into equivalence
classes which are the different orbits, so let me just draw a picture these are let us say the
different orbits of the various elements , ok. So, I have my orbits ok G orbits in X ok that is
what the picture is. Now, observe that the sum of all these orbits so, let us give these orbits
names may be O1, O2, ... there are some finitely many of them. Observe that the sum of the
orbit cardinalities is of course, the cardinality of the whole set X ok . So, this cardinality
plus this plus this plus this plus this and so on just going to give you the full cardinality.∑

i

|Oi| = |X|

Now, since the whole cardinality is not divisible by p at least one of these o i’s there exists
an orbit whose cardinality is not divisible by p right otherwise, every if every single orbit had
cardinality divisible by p, the total sum would also be divisible by p ok. So, let us pick that
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orbit so, let us take an element in that orbit maybe so, in my picture, let us just say maybe
this this green fellow has cardinality which is not divisible by p so, I will take this orbit and
let me pick a particular element in this orbit ok. So, let me take an element inside . So, let
me call that element something a ok, so let um; let a belong to that orbit. So, suppose so, let
us say so, suppose a is that kind suppose the orbit of a so, this is remember this is a notation
G · a just means the orbit of a has the property that p does not divide the orbit cardinality
ok . Suppose the orbit of a has the property you should say has the property ok.

So, consider that particular orbit the one that is marked in green there. Now, let us recall
the the counting statement which says that recall: the counting theorem which says that the
cardinality of an orbit is just the cardinality of the full group divided by the cardinality of
the stabilizer ok. So, what is Ga here? Ga = {g ∈ G|ga = a} is nothing, but the stabilizer of
a which just means its all group elements of G which fix a ok. So, this is just the counting
theorem.

So, what is this this mean? So, what is this this G a here? So, what are our conclusions?
So, here are various conclusions. Consider this new subgroup. So, remember the Sylow
theorem says that we are trying to find a subgroup with some properties ok.

So, consider this subgroup Ga ok. So, this is sort of going to be my candidate for my
Sylow subgroup or my subgroup Hwhose thing is a power of p So, let me call it H1. Consider
the subgroup H1 which is the stabilizer of G. So, this is a subgroup ok. So, this is just my
notation for now. I am just calling Ga = H1 . What do I know about it ok? Consider this
now let me try and figure out some facts about it.

|G|
|Ga|

= |orbit(a)|
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which is not divisible by p that was our assumption ok. So, now, what does that mean? So,
let us write this cardinality of |G| = pdm. Cardinality of |Ga| = pd

′
m′. So, d prime is some

power so, I do not know could be 0 as well, m prime is some number which is 1 or more

ok. Now, let us divide |G|
|Ga| . So, observe any any number, any natural number can always be

written in this form as p to the some power times some natural number ok uniquely where
p does not divide m prime ok. So, this is pdm. Now in this quotient, what is it that I know
that finally, there are no powers of p occurring ok.

So, after I consider this quotient here, after I have cancelled out all the common factors,
what I know is that no p is occur; no powers of p are left over ; no powers of p divide
this quotient , well when can that happen? It can only happen if every power of p on the
denominator everything here canceled out everything on top right only then, can you not
have any p’s remaining. So, remember m and m′ are relatively prime to p right, they have no
p′s in them they are products of powers of other primes. So, what is this mean? This means
that the only way this could have happened is if this power d prime was actually equal to
this power d ok. In other words, what have we done we have constructed a subgroup G a
which has the following property that its cardinality looks like this it is pdm′ ok the d being
the same d as what we had for the original group ok ok.

So, this subgroup. So, maybe let me call this subgroup not as H1, but as H ′ ok. So, H’ is
this this subgroup here and what I conclude is that H ′ has so, it is; it is just another name
for Ga, this is has cardinality which also looks like this pdm′ , ok for the same power pdm′, p
does not dividem′ok. Now, so we are almost there in other words, H ′ is almost the subgroup
we are looking for what is it that the Sylow theorem says here is a statement it says that
I can find a subgroup H of G whose cardinality is just pd ok just that maximum power pd.
This is an almost so, by the way this such a subgroup His called a Sylow subgroup or a
p-Sylow subgroup.
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What we have manufactured now is something which is almost a p-Sylow subgroup. Its
cardinality is it and the maximum power of p is the same still pd. But then, there is some
additional factor m′ here ok which could be 1 or more. If m′ = 1, then we are done, ok ok.

So, we are almost there . So, this is see. So, let me observe the following that to start
with I had my original group G whose cardinality was pdm′ sorry pdm. Now, inside G, I
manufactured this G a subgroup which we will call H’ whose cardinality is also the form p
to the d times something ok. Now, observe this G is of course, bigger than than H ′.H ′ is a
subgroup of G. So, observe certainly thatm has to be greater than or equal tom′ok because
the cardinality of H ′ is less than or equal to the cardinality of G ok. But in fact, this is
strictly smaller ok, but observe something more m is actually strictly bigger than m′ ok.

In other words, this is a proper subgroup, this is not the whole guy, it is actually a proper
subgroup. In other words , H ′ cannot be the whole thing ok why not? Because if H ′ this
subgroup we have constructed is the whole group G, then it means that well what was H ′?
It was the the stabilizer of that element G. If the stabilizer of that element is the whole
group well that just means that every element of the group stabilizes that element a. In
other words, orbit(a) = {a} itself right or if you want to think in terms of cardinalities, the
cardinality of the orbit is just 1 ok. Now, what does that mean? It means a is a fixed point
ok. But that is a contradiction remember this was a fixed-point free action. So, that is why,
we are using that property.

That, since it was a fixed-point free action, the subgroup the stabilizer of that element Ga

is a proper subgroup of the p-group ok. So, we have manage to to sort of reduce the size of
the problem instead of the original group G, we now have a proper subgroup H ′ ok and both
G and H ′ have the same power of p, the same highest power of p dividing both ok.

Now, it is all we have to do is really repeat the argument. Now, here is the next step. If
H ′ is a p group; if H ′ is a p- group what does that mean? It means that that powermprime is
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exactly 1 I am; I am sorry the numbermprime is 1 let us go up again which means that this
is already just the cardinality is p to the d ok there is nomprime in it then, we are done.

Then H ′ itself is your Sylow group right is the p Sylow subgroup because its cardinality is
exactly pd ok. Then again, we are done. Then take Hthe p Sylow subgroup in the theorem
to just p H ′ and we can stop the proof right there ok. If not; if not, well then let us repeat
the above set of arguments , repeat the above arguments using proposition B. So, remember
proposition B is is really the key statement that we need. It says if you have a non p- group,
then you can construct a nice, fixed-point free action ok. So, if you see what we have done?
If G is not a p- group, it had cardinality pdm and ifm 6= 1, it is not a p group then, we are
able to construct a subgroup H ′ whose cardinality now looks like pdm prime. If m prime is 1,
then you are done. If m prime is greater than 1, which means that this is also not a p group,
then you can repeat the argument and construct another subgroup H ′ and this subgroup H ′

also has. So, the subgroup H ′ has cardinality which is again of the same form which is the
power of p is still the same and the the numbermis now the numberm′or ratherm′′ in this case
ok. So, let us call itm′′. Now, ifm′′ = 1 which means if H double prime is a p group, then
again, we are done ok. So, now, again you know it is now a question of the just repeating
the argument again and again.

So, observe if m′′ = 1, then we are done, ifm′′ = 1, then the Sylow group you are looking
for is just Hdouble prime you are done else repeat the argument again ok ok. So, else would
mean m′′ is also positive strictly bigger than 1, you can construct another guy and so on. So,
observe that this sequence of subgroups that we are constructing, they all have the following
property that they all have cardinalities of the form p power d into something. That p power
d is the same throughout and these numbers m,m, m’,m′′,m′′’ are all you know m is strictly
bigger than this, is strictly bigger than this, is strictly bigger than this and so on . They are
all at least 1 of course, ok. Why is this strictly inequality is because at every step, you have
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a proper subgroup right. So, the cardinality of G is strictly bigger than the cardinality of H ′

which means that since pd factor is the same m had better be bigger than m prime ok.
So, I construct such a strictly descending chain, but all of them are at least 1 right. So,

this means that the process has to stop somewhere, you cannot keep going on forever the
process has to stop and at some point, it stops you you have to reach 1 which means that
there is some subgroup at some ′′′′ has cardinality pd into the corresponding m′′′′ = 1.

So, in other words its cardinality is pd ok. So, you you cannot keep going on and on here.
At some point, the process has to stop which means that you must have reached a p-group
ok and that is really the the proof of the theorem ok. So, this is proof complete ok. So, if you
have seen may be the proof of of Sylow’s theorem from you know prior courses and so on this
is it looks slightly different , but it is the proof has been arranged in this manner primarily
to to focus on the fact that Sylow’s theorem itself is actually you know just a consequence of
a statement about the existence of fixed point free action. So, this is really what underlies
Sylow’s theorem that is what is going on in the background ok . Now, so, I hope you will
sort of look through this proof again and try to understand the the basic idea here. It is; it
is a rather simple idea that at every step, if you have a p group you are done.

If it is not a p group, you can construct a fixed point free action, take one of the orbits
in that; in that action which is not divisible by p, the cardinality not divisible by p and the
stabilizer of an element there will give you a proper subgroup and you know keep going on
and on and on at some point that stabilizer will have to become a p- group ok. Otherwise,
this process goes on forever which is a contradiction ok. Now, that is; that is an interesting
uh consequence of proposition B, but what is extremely interesting is that in fact, the first
Sylow theorem also implies proposition B ok. So, we have proved one implication, but in
fact, one can show that you can now assume the statement of Sylow theorem I and deduce
proposition B from it ok.
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So, I am going to leave this as an exercise for you, but please do try this exercise . Show
that Sylow theorem I implies the statement of proposition B ok. So, assume this statement
and prove the other statement ok. So, which means that so, what is proposition B state?
If it is not ap group, then you should somehow construct a set X on which the group acts
without fixed points ok. And to do that, you have to use the Sylow subgroup now ok. So,
if G is a given to be a non p group, look at the p Sylow subgroup of that group and use the
group and the subgroup to somehow construct the set X on which the group acts without
fixed points, ok. So, it is a; it is a very interesting and useful exercise and I hope you will;
you will try your hand at it .
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