Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 13: Semidirect products

Given group G and normal subgroup N and another subgroup K with the property that every for every $g \in G$, g = nk, for some $n \in N$ and $k \in K$, and this product is unique. For the dihedral group $D_n = C_n \rtimes C_2$.

Given group G and normal subgroup N and another subgroup K with the above property with a group homomorphism $\psi: K \to \operatorname{Aut}(N)$, we can define the inner product by the rule:

 $(n_1, k_1) \cdot (n_2, k_2) = (n_1 \psi(k_1)(n_2), k_1 k_2).$

Example 1.1. We construct another group which will call the infinite dihedral group, D_{∞} . The infinite dihedral group is defined to be $\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$. Consider the graph L, graph with vertex set \mathbb{Z} and edges of the form (i, i + 1) for each $i \in \mathbb{Z}$. D_{∞} is isomorphic to automorphism group of this graph L.