Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 11: Product and Chinese Remainder Theorem

Given two groups $G, H, G \times H$ is a group under the operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1h_1, g_2h_2).$

Example 1.1. Consider $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. What is the order? Is it isomorphic to $\mathbb{Z}/4\mathbb{Z}$?

Example 1.2. Consider $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. It turns out that this group is isomorphic to $\mathbb{Z}/6\mathbb{Z}$.

This is a special case of very ancient theorem going back to 3rd century China, the Chinese mathematicians Lao Tzu called the Chinese remainder theorem. You have two positive integers m, n whose gcd is 1. So, let us say these are positive integers, and the gcd of m and n is equal to 1. Now, you have this group $\mathbb{Z}/mn\mathbb{Z}$. You have a homomorphism to $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, given by $x \mod mn \to (x \mod m, x \mod n)$. The Chinese remainder theorem says the map is surjective. The way Lao Tzu stated is is that suppose you have two numbers m and n which are co prime, then you can specify what remainder you want modulo m and what remainder you want modulo and find a number which satisfies both these which gives both these remainder simultaneously.

Example 1.3. m = 2, n = 3, so if you want remainders 1, 2 in $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$. You can just take 5 mod 6. Another way to solve it is to take $x \equiv 1 \mod 2$ so $x = 2k_1 + 1$ for some integer k_1 . Which substituted into the second equation gives $2k_1 + 1 \equiv 2 \mod 3$ so that $k_1 \equiv 2 \mod 3$ since $2^{-1} = 2$ (since $2 \cdot 2 \equiv 1 \mod 3$). Thus $k_1 = 3k_2 + 2$ and $x = 2(3k_2 + 2) + 1 = 6k_2 + 5$. Thus $x \equiv 5 \mod 6$.