
Hello, today we are going to talk about permutations. I will use the notation [n] to denote the
first n natural numbers. A permutation of n symbols is just a bijective function from [n] to [n]:
σ : [n]→[n] .

What does bijective function mean? It is a function that is injective and surjective.
Example 1.
Take n=3. Observe that [3]={1,2,3}. Recall that a permutation of [3] is a bijective function 
σ : [3]→[3] .

These are the images of each element in [3] under this permutation:
σ(1)=2
σ(2)=3
σ(3)=1.

We can denote this permutation by matching an element on the left to its image on the right as under
for the permutation σ :

A permutation is thus a rearrangement of the numbers  {1,...,n}. We use the notation S n  to 
denote the set of all permutations on n letters.

I will use what is called one-line notation to  describe a permutation. So, if I have a 
permutation σ  , then its one-line notation is simply σ(1)σ(2)...σ(n)  in sequence. So, if you look
at the permutation we had earlier it is one line notation is just - σ(1)σ(2)σ (3) which is 231. This 
is an efficient way of writing down permutations.

Example 2.
I am going to try to list all the permutations in S 3 . The simplest permutation takes 1 to 1, 2 to 2 and
3 to 3. Such a permutation exists for all S n  defined in the obvious way. It is called the identity and 
is denoted id.  So, in one-line notation the id is 123. 
So, what else can I do? I can take 1 to 1, I can take 2 to 3 and 3 to 2 to give 132. This exhausts the 
possibilities where I am taking 1 to 1. 
If I am taking 1 to 2 then what can I do? I can take 2 to 1 and 3 to 3 to give 213, or I can take 2 to 3 
and then 3 to 1 to give 231.
I can take 1 to 3 in which case I can take  2 to 1 and 3 to 2 to give 312, or 3 to 1 and 2 to 2 to give 
321. 
So, these are the 6 permutations on 3 letters. 

How many permutations are there in S n ? Firstly  how many choices do I have for σ(1) ? 
So it can go to any of the numbers 1 to n. So, sigma(1) has n choices. Now having made that 
choice, how many choices do I have for σ(2) ? Well, I have already used up 1 of the n numbers for
σ(1)  so I cannot use it again. So, I have n-1 choices for σ(2) . Now having chosen σ(1)  and
σ(2) what remains are n-2 choices for σ(3)  and so it goes. All the way in the end having chosen
σ(1) , σ(2) ,... σ(n−1) , there will be only one element from the set 1 to n which has not been 
used and that is going to be σ(n) . So, there are: n! :=n(n−1)(n−2) ...1
permutations of the set [n]. We call n! “n factorial”. Observe that S 3  has cardinality 6=3!. 

If you take a deck of cards, then  the every every rearrangement of this deck of cards is a 
permutation. How many possible such decks can I get? If you do not have the jokers then it is  52!-
pretty large! 
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The theory of permutations becomes much more interesting  once we take into account 
certain binary operations that we can perform on them. Binary operations on a set S are functions
σ : S×S →S - that is, they take two elements of S as input and output an element of S. The 
operation I am talking about is called composition. If I have bijections  σ1 :[n ]→[n]  and
σ2: [n]→[n]  , then I can compose these functions to get a  bijection which we denote
σ2⋅σ1 :[n]→[n ] . This is because the composition of bijections is still a bijection. What I get is a 
way of creating a new permutation given 2 permutations.

Example 3.

Let us take  σ1=231 and σ2=213 . How do I compute  σ2⋅σ1 (note σ2 is on the left in the product 
but on the right in the figure)? So, σ2⋅σ1(1)=σ2(σ1(1)) . Now σ1(1)=2 and σ2(2)=1 , so
σ2⋅σ1(1)=1 . Similarly σ1(2)=3 and σ2(3)=3 so σ2⋅σ1(2)=3 .Similarly, σ2⋅σ1(3)=2 . So
σ2⋅σ1=132 . Another way of thinking about this is: Under σ1 , 1 goes to 2 and  then 2 goes to 1 
under σ2 . So I can just follow through this arrow from left to right and that is telling me that under
σ2⋅σ1  1 goes to 1.
And where does 2 go? Again I will start with 2 and then I will follow the arrow. So, 2 goes to 3 
under σ1 and 3 goes to 3 under σ 2 , so 2 goes to 3. The 3 goes to 1 under σ1  and then 1 goes to 2 
under σ2 , so 3 goes to 2. So, so you can compose permutations by simply following through the 
arrows. 

Example 4.
This time we will take  a 3rd  permutation σ3=132. I want to compute σ3⋅σ2⋅σ1 . You can think 
about this in 2 ways, either as composing  σ1  and σ2 - so that is what we just computed- and then 
we compose it with σ3 .

So we get the identity permutation from Example 2. 
Or I could have done this in another order I could have done it  (σ3⋅σ2)⋅σ1 . Note that there is no 
difference between  (σ 3⋅σ2)⋅σ1  and σ3⋅(σ2⋅σ1) .

 

The identity permutation has the property that when you compose it with any permutation it 
does not change the permutation.



The third property that I want to illustrate about permutations is that it is possible to 'undo' 
anything that you have done.

Example 5.
Let σ=231 , then I can find a permutation  which undoes whatever I did. So, if I have taken 1 to 2 I
want to undo it I want to take 2 back to 1. So, 2 must go back to 1. Since 2 goes to 3, I want to take 
3 back to 2; and 3 goes to 1, thus I want to take 1 back to 3.

 
This is what we call the inverse function in set theory. So this is called the inverse of σ  , and is 
denoted σ−1 . Observe that σ⋅σ−1  is also the identity.
So to summarize, for every  n⩾1, :

 The set S n  of permutations of [n] has cardinality n!. 
 Each permutation may be written in one-line notation by listing in increasing order of 

elements of [n] the images of those elements.
 The set S n has a binary operation called composition.
 This binary operation satisfies the following axioms:

◦ Closure: Composing two permutations yields a permutation. 
◦ Associativity: σ3⋅(σ2⋅σ1)=(σ3⋅σ2)⋅σ1  for all σ3,σ2,σ1∈S n .

◦ Existence of identity: There exists an element id ∈S n such that id⋅σ=σ⋅id =σ for all
σ∈S n.

◦ Existence of inverse: For every σ∈S n there exists an element σ−1 such that

σ
−1
⋅σ=σ⋅σ

−1
=id .

These  these properties of permutations taken together abstractly give the definition of an abstract 
group, which we will talk about next time.
 




