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So, till now we have seen what are vector spaces? What is meant by linear combination of 

vectors, linear independents of vectors and spanning set and so on? However, all these 

notions are restricted to within a given vector space. So, in this video we will see how if there 

are two different vector spaces say, V and W how they interact with each other. The tool 

which the tool with which we will be studying this interacting is called as linear 

transformations. 

Linear transformation is a function from given vector space to another which satisfies certain 

nice properties which we will see in a moment.  
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Let me start with a definition, so linear transformations are central to the study of a linear 

algebra in particular those particular course. We will be studying various properties of a 

linear transformations for a long time, not specific linear transformation but generally of 

linear transformations. So, let me first define what a linear transformation is? Linear 

transformation, so let V and W be vector spaces. 

Till now, W was a vector subspace of V in various cases that is how these notations were 

being used. However, that is not the case now, V and W are two different vector spaces. As 

needless to say, I am always considering vector spaces so over R here. A function T let us 



call T for transformation from V to W is called a linear transformation if the following are 

satisfied. So, it is a function in particular it satisfies the following. 1, the addition in V is 

preserved in other words if we take two vectors look at the sum and look at its image, it will 

be the sum of the images, so let me write it down, it will become clearer.  

T of v1 plus v2 is equal to T of v1 plus T of v2 and the second condition states that the scaler 

multiplication is also preserved. So, in other words T of cv is equal to c times T of v, so this 

is for all v1 and v2 in capital V the first case and this is for all the second case, c real number 

and v in capital V. So, let us spend a couple of minutes trying to see what is happening here. 

Let us use the green colour to denote, so let me circle the vector addition v1 plus v2. So, I 

would like to point out that this is happening in V, this is a vector addition which is 

happening in V.  

Now, red is being used to circle out vector addition however, remember that this is a vector 

addition in W even though I am using the same notation. I am not specifying where it is but 

the context makes it clear, so it is your job to slowly start identifying where which operation 

is happening. So, as you can see this red is a vector addition which is happening in W, why? 

Because T of v1 and T of v2 are vectors in W. So, the vector addition has to be in the vector 

space W, is not it? 

Similarly, this scaler multiplication that is also happening in V, c times v is a scaler 

multiplication in which happening in V at the same time, this scaler addition this is happening 

in W because T of V is a vector in W and c times T of v is happening in the vector space W. 

So that is what it says, It is in some sense preserving the structure the structure of the vector 

space, the structure in V and the structure of W are in some sense compactible through T. So, 

let us look at some examples of a linear transformations. 
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Examples, the first example and the, I should say the simplest example should will be the 

map T from a vector space V into another vector space W be given by, T of v is equal to as in 

0 of the vector space W. Let me just write it once or twice to point out that this is where all 

these things are happening. So, this is the 0 vector in W, every element of V is being mapped 

with the 0 vector so this is called the zero transformation-linear, this is called linear 

transformation is called the why is it zero linear transformation we have to check that. 

That is quite straightforward; let me do that for a couple of cases. Before we proceed, I would 

like to may be state a lemma which I will leave as an exercise.  
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So, when is a function from a vector space V to W a linear transformation? It is a linear 

transformation, if both these conditions are satisfied. What we will do through this Lemma is 

too simplified, we will just put one condition to check for a particular function being a linear 

transformation. So, let T from V to W be a function between vector spaces V and W, then T 

is a linear transformation if and only if, T of v1 plus cv2 is equal to T of v1 plus c times T of 

v2 for all v1, v2 in capital V and c, a real number.  

So, I will just leave this as an exercise it is quite straight forward, you have to show both 

sides here. If T is a linear transformation you should show that T of v1 plus cv2 is equal to T 

of v1 plus c times T of v2 for all v1, v2 in V and c in R. And similarly, the converse would be 

if T is satisfying this to that it is again these two conditions are satisfied, these two conditions 

of a linear transformation. With this Lemma let us start looking at more examples, before we 

go into a second example observe that in example 1, T of v1 plus c times v2 is equal to the 0 

vector W. 

And this is just the same as T of v1 plus c times T of v2, why is that the case? This is also the 

0 vector in W, this is also the 0 vector in W. A scaler times 0 vector is 0 and the sum of 0 

vector is again 0 vector. So yes, this is certainly a linear transformation.  
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Let us look at the second example, let us call this particular map I so T is not necessarily the 

only alphabet you should be using I from V to itself be the function, be the map given by I of 

v is equal to v for all V in capital V.  



Again, check that I is a linear transformation. This particular linear transformation I is called 

the identity linear transformation. So, these are two very important and very straight forward 

examples that we should immediately look ahead and let us now look into slightly more 

interesting examples.  
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Let us see T be a map from R to itself be given by T of let us call it x an element in R is sent 

to m times x for a fixed real number m. Then, T will be a linear transformation, so just too 

quickly check that, T of let say x1 plus cx2 just the equal to m times x1 plus cx2 which is 

equal to mx1 plus mcx2 which I will write it as cmx2 which in particular as T of x1 plus c 

times T of x2. 

So, when there is just one vector or one element x1 on which T is acting I will slowly stop 

writing the brackets around it. So, T of x1 and Tx1 should be in the same thing. So this 

proves that T is a linear transformation so in other words dilations or scaling by a fixed 

number is a linear transformation. What could be a good example next?  
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Let us look at T of so T of,T be a map from R2 to itself, where T of some vector let say x1, 

x2. So, T of this is equal to x1 plus x2, 2 x1 plus 3 x2 this is a map from R2 to itself, so one 

can quickly check so maybe I should do the check at least in the initial stages. 

Let us see if x1, x2 plus say c times x1, y1 and x2, y2 so may be here as well, let me change it 

to so it was x plus y, 2 x plus 3 y. So, this is equal to what it would be equal to? This is equal 

to T of x1 plus cx2 comma y1 plus cy2 which is equal to x1 plus cx2 plus y1 plus cy2 comma 

2 times x1 plus cx2 plus 3 times y1 plus cy2. Let see what happens when we expand this out. 

This is equal to, so finally what do we want? We want this to be T of x1, y1 plus c times T of 

x2, y2 that is what we want. 

So, this is going to be x1 plus y1 comma 2 times x1 plus 3 times y1 plus cx2 plus cy2 comma 

2 times cx2 plus 3 times cy2 which is equal to, so this is already equal to T of x1, y1. And in 

the second case this is going to be c times just take out the c common here because this is 

actually multiplication by, okay I will just write it down. This is x2 plus y2, 2 x2 plus 3 y2 

which in particular is equal to plus c times T of x2, y2. So, I will slowly stop doing all these 

checks for every case and slowly start giving them as exercises to you. 

So, this in particular proves that this particular map is a linear transformation. The previous 

example was from R to itself, this was from R2 to itself, so let us now just look at some 

example where the domain and the range are different.  
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Let T of x1, so T be a map now from R2 to R3 where the map is given by T of x1 comma x2 

is equal to x1 plus 2 x2, 3 x1 plus 4 x2, 9 x1 plus 10 x2. Check that T is indeed a linear 

transformation. At this point let us focus on how we can rewrite this in order to see if it can 

be realised as multiplication by a matrix. 

I am sure you should be familiar with matrix multiplications. So, if vectors in say R2 and R3 

can be written down as columns. So, writing if we write vectors in Rn as columns, Rn in 

general as columns instead of rows, what can we write this as? This is a basically telling as 

that T of x1 x2 this is the column representation of the vector x1, x2. This is equal to x1 plus 

2 x2, 3 x1 plus 4 x2, 9 x1 plus 10 x2 this is the column representation of the image. What is 



this? This if you observe carefully is 1, 2, 3, 4, 9, 10 this matrix multiplied to the column 

vector x1, x2. 

So, what we have done is we have realised that there is a matrix which is corresponding to 

this particular linear transformation. So, that naturally asks that naturally motivates is to ask 

the following question which will be our next example.  
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The next example being let A be an m cross n matrix with coefficients in R of course. Then, 

define T of an N vector, so right now we will be treating all these as a columns. So, this is x1 

up to xn to be equal to A times the vector x1 to xn. What will be the solution here? What will 

be the result here? This will be an element of Rm in the column representation, so where this 

is the matrix multiplication. 

What we will finally be able to see is that, T is then a linear transformation, we will come 

back to this later certainly. So, if you can take the effort to painstakingly write down the 

explicit expression of T of x1 to xn here in terms of the coefficients in A. It is very straight 

forward to indeed check that T is a linear transformation. So, I will not going to details there. 

The point here is to note that right now we are trying to realise matrixes, so as linear 

transformations. So, as I said later we will realise that, we will see that every linear 

transformation T can be realised as a matrix.  

So, we will come to all that later but it is crucial to make this observation right now that 

matrix multiplication is indeed a linear transformation. We are only looking at linear 



transformations in Rn but may be the next example will tell you that, that is not necessarily 

restricted to just Rn obviously not.  
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So, let T be the map let us call it something else, this actually has a classical notation to it. 

Let, D be the map from P of R to itself, where D of a polynomial is its derivative, P prime of 

x. Then check that from calculous you should know that D is a linear transformation. 

The reason why I mentioned that you should know this from calculous is because; we know 

that if you look at the derivative of sum of two polynomials, It will be the sum of the 

derivatives, and similarly if you look at the derivative of a constant times a polynomial, it is 

going to be the constant times the derivative of the polynomial, so yes it is indeed a linear 



transformation. So, note that this is not necessarily a map from P of, it is certainly a map from 

P of R to itself but we could also think of D restricted to say a P 5 of R or P 4 of R. 

Observe that D from say P 4 of R, if you take a degree four polynomial and look at its 

derivative you will end up with a degree three polynomial, so this is a polynomial in P 3 of R 

is also a linear transformation. I would at this point make the distinction that the example 

which I am underlining in a green is technically different from the example which I have 

underlined it red because the vector spaces from which the linear transformation underlined 

in green is P of R and it is range is also P of R that is not the case in the, case where it is 

underlined in red. It is a map from say linear transformation from P four of R to P 3 of R. 

So, even though the map is the same, I did not write the map but the map is exactly the same. 

What is the map? The map is basically where D of P of x is the same thing, the derivative but 

it is important to observe that the moment we talk about a linear transformation, there is a 

domain and there is a range and they are important. Even though it is technically the same 

derivative that we are looking at. So, I will just note this as a different, okay let me not 

confused too much made my point with words so that is enough here. 
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Another example might be to look at the example of the vector space R infinity, let me recall 

that this is the vector space x1, x2 dot-dot-dot the infinite sequences. Where xi is are all 

elements in R and T from R infinity to itself the defined by, T of say x1, x2 dot-dot-dot this is 

mapped to by shifting it to the right. Why are that two brackets not needed so, check that T is 

a linear transformation. T is called the right shift operator, it shifts the vector to the right, so it 

is called T is called the right shift operator. So, we have seen quite a lot of examples now and 

we will be seeing many-many more examples in the next few days. 

And let us right now stop with examples and start studying the properties of linear 

transformation.  
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So, the first Lemma it is a simple result, the first Lemma which we would like to prove here 

would be that every linear transformation necessarily maps the 0 vector. So, let T from V to 

W so before I just go ahead observe that, go through the examples which were listed again 

and observe that we are not restricting our definitions and examples to finite dimensional 

vectors spaces. 

As noted P of R to P of R is a linear transformation, that is an infinite dimensional, it is not a 

finite dimensional vector space. Same is the case with the last example which was given 

which was from R infinity to R infinity which is not which actually is an exercise to you, to 

show that R infinity is not a finite dimensional vector space.  

And that this is an example of a linear transformation from an infinite dimensional vector 

space to itself. So, this Lemma T from V to W this Lemma states that, every vector every 

linear transformation from a vector space V to W should necessarily map 0 to the 0 vector of 

W, 0 of V to the 0 vector of W. 

Then T of the 0 so after this Lemma I will slowly stop writing the subscripts V and W which 

will be clear from the context but, let me write the subscripts in the proof of at least Lemma. 

So, let us give a quick proof of this statement. So, what do we have this is the same trick 

which we have been using for proving these kind of results. We are interested in T of 0 of V 

and this is nothing but T of 0 V plus 0 V, but T is a linear transformation so this is equal to, T 

of 0 V plus T of 0 V. 

Now, let us add the additive remember that T of 0 V is some vector in W adding the additive 

inverse of this vector. T of 0 V to both sides, what do we have? We have 0 of W because the 



left hand side has only a T of 0 V if you added to the additive inverse of T of 0 V in W we get 

the additive additivity of W which is the 0 W that is equal to I will leave it for you to check 

that this is 0 W plus T of 0 V which is equal to T of 0 V and that completes the proof.  

  

  

  


