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Orthonormal basis 

So, in the last week we introduced the concept of an Inner Product Space. We defined the 

notion of length of a given vector in a inner product space and we also defined when it, what 

it means to say that two vectors are orthogonal to each other. We talked about a few 

properties of orthogonality. So, for example we prove that, if w is orthogonal to vectors v1, 

v2 up to say vk, then w is also orthogonal to a linear combination of this vectors and we 

proved the Pythagoras theorem in an inner product space.  

We also generalized it to finitely many vectors. So, in this week we will begin by discussing 

the notion of an orthonormal basis. It is a basis, basically it is a basis, which consists of 

vectors which are orthogonal to each other and each of which has length 1. So, let us begin by 

discussing what it means to say that a collection of vectors. 
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So, we say that a collection of vectors v1 to vn in an inner product space V is orthogonal, 

when it is orthogonal pair wise. If the inner product of v1 with vj is equal to 0, whenever i is 

not equal to j and we say that a collection is orthonormal, if it is not just orthogonal, but also 

if the length of each of the vectors is 1.  

If it is of unit length, so we say that the collection is orthonormal, its normalized that is where 

the normal is coming from, it is orthonormal, if it is orthogonal and if the length of vi is equal 



to 1 for every i. So, it is not just enough for the vectors to be orthogonal pair wise orthogonal, 

but the length of the vector should also be 1. So, let us look at a few examples. 
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So, example, let us work with R2 or maybe R3 with the standard inner product, which is the 

dot product. So, consider R2 with the standard inner product and consider the collection of 

vectors. So, let us see v1, let it be equal to 1, 2, 0 and v2 be equal to 0, 0, 3. Then this is an 

orthogonal set of vectors. This collection, then this collection of vectors is orthogonal, is 

orthogonal. That is straightforward check, if you look at the inner product of v1 and v2 they 

will just turn out to be 0. However, if you observe carefully, this is not an orthonormal 

collection.  
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However, this is not an orthonormal collection. What would be an orthonormal collection, let 

us see may be, so v1 is equal to v by square root of 5, 2 by square root of 5, 0 and v2 equal to 

0, 0, 1 by root 3 or maybe not just 1. This is an orthonormal collection this, so if you look at 

this collection is an orthonormal collection.  

If you look at the length of v1, that is just going to be square root of 1 by 5 plus 4 by 5 plus 0, 

which is square root of 1, which is 1. So, this is an orthonormal collection of vectors. So, why 

are we considering such collections of course there are many, many good properties which 

come out, but let us see orthonormal properties, orthonormal collection, collection of 

orthonormal vectors has some really nice properties, one of which, is that it is linearly 

independent. 
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So, let us prove it, let us state the proposition if v1 to vn is a collection of orthonormal 

vectors, then they are linearly independent, they are linearly independent. Well, let us have a 

look at, a proof. Well, we could prove it in multiple ways, but let us make use of let us make 

use of what we already know, we have already proved. So, suppose we have a linear 

combination of v1 to vn which is equal to 0. Suppose, a1 v1 plus a2 v2 plus an vn is equal to 

the 0 vector.  

So, as you can see I have slowly again stopped indicating, whether it is a complex vector 

space or real vector space or rather a complex inner product space or real inner product space. 

But unless and until it is mentioned explicitly all our results go through for both. So, let me 

not unnecessarily bring it up again and again. Our results whichever we are stating and 

proving are true for inner product spaces over both real numbers or inner product spaces over 

comple numbers.  

So, suppose we have a linear combination which is equal to 0, then let us see what is the 

inner product of a1 v1 or maybe let us use the corollary to the generalized Pythagoras 

theorem by the corollary to the generalized Pythagoras theorem from the last week, what can 

we conclude.  
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We can conclude that the length of this vector be length of a1 v1 plus to an vn square, this is 

going to be equal to mod a1 square length of v1 square plus up to mod an square length of vn 

square.  
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But what do we know about v1, v2 up to vn, it is after all as you can see, let me underline it, 

it is a collection of orthonormal vectors, so in particular each of these vis have length 1. 
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That means, this is just equal to, this is just equal to mod a1 square plus mod a2 square plus 

mod an square. But till now we did not have to worry about which field of scalars we were 

working on, but again irrespective of whether we are working over, working in an inner 

product space over complex numbers or whether it is an inner product space over real 

numbers. The absolute value the square of the absolute values are all positive numbers.  

So, this is all a sum of, so this is greater than or equal to 0, when is the equality going to 

come up? With equality only if mod ai is equal to 0 for all i. So, this will happen, only if each 

of these positive numbers are 0, even if one of them is nonzero, it will be strictly greater than 

0 and therefore it cannot be equal to 0. So, it is 0 means that each of them is forced to be 0. 

But when is the absolute value of a real number or a complex number equal to 0. 

This happens only if the number itself is 0 only if the scalar itself is 0. So, this is if and only if 

ai is equal to 0 for i is equal to 1 to n and this forces our vectors v1, v2 up to vn to be linearly 

independent. Just to tell you or show you that the operation of inner products and the various 

consequences are powerful. 
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Let us look at an alternate proof, which is, it is not like this, it is not elegant. It is just that we 

can see that there are multiple approaches. So, suppose again a1 v1 plus up to an vn let this 

be equal to the 0 vector. Then we look if you look at the inner product of a1 v1 plus up to an 

vn and let us look at the inner product of this with vj, where vj is one of the vectors from the 

collection. By linearity, this is just going to be a1 times inner product of v1 vj plus a2 times 

inner product of v1 vj plus an times the inner product of vn vj. 

Now what do you know about vis? They are orthonormal that means if i not equal to j inner 

product of vi and vj will be 0 and if i is equal to j, the inner product of vj vj will be the square 

of the length of vj which is equal to 1. So, this is just going to be equal to aj times the inner 

product of vj with vj, which is equal to aj, because length of vj is equal to 1 and therefore 

inner product of vj, with itself is equal to 1, all other terms vanish notice that. But what is a1 

v1 plus a2 v2 up to an vn, it is just the 0 vector. So, this implies 0, so this is equal to 0. So, 

this implies 0 is equal to aj and if you do it for j is equal to 1, 2, 3 up to n. 
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We conclude that, each of the ajs are forced to be 0, hence v1 to vn are linearly independent. 

So, we gave two proofs for this result, but nevertheless that is good result to keep in mind and 

this is just the beginning of many good things that we get out of orthonormal set of vectors.  

Let us next define what is meant by an orthonormal basis. As you can guess an orthonormal 

basis is a basis which is also an orthonormal collection.  
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So, definition of an orthonormal basis, so let me just write definition here, a, an orthonormal 

basis is a collection of vectors, is of vectors which is both an ordered basis and an 

orthonormal set which is an ordered basis, which is an orthonormal set, which is an 



orthonormal. Let us look at a few examples, so the standard basis in Rn of Rn this is an 

orthonormal basis with respect to the standard inner product in Rn.  

This is an orthonormal basis it is check for you to see that they are orthogonal to each other 

and that each of them has unit length. It is an orthonormal basis with respect to the standard 

inner product. Let us usually work with standard inner product. So, if I failed to mention 

which inner product we are working with in Rn it will be the standard inner product. Well let 

us be a little more adventurous. 

(Refer Slide Time: 15:53) 

 

So, another example, so let us look at the following collections. So, let v1 be equal to 3 by 4, 

3 by 5 and then 4 by 5. You can check that the length of v1 is 1 and what about v2 v2 be 

minus of 4 by 5 and 3 by 5. You can check that v2 has also length 1 and it is immediate to see 

that in R2 v1 and v2, they form an orthogonal collection if, they form an orthonormal set and 

therefore it is linearly independent.  

Dimension of R2 is 2 and any linearly independent set of size 2 is a basis. So, this is an 

orthonormal basis. So, orthonormal basis are quite handy to work with. So, if for example, if 

you start with an arbitrary basis in say Rn and if you would like to. So, we know that every 

vector can be written as a unique linear combination of vectors in this ordered basis.  

If we are to write down explicitly, what this linear combination is, it is a very tedious process. 

In fact, even in small, in low dimensional Rn. So, for example R4, if you take and if you want 

to write say 1, 5, 6, 7 in terms of a basis which is not the standard basis, it is quite 



complicated to find out what is the coefficient are and that is precisely where the orthonormal 

basis comes in a very handy manner.  

We can write down explicitly what would be the coefficient featuring in the linear 

combination of the given vectors in a very simple manner we can do that. So, that will be our 

next goal. So, let me just note what I just said. 
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So, in a vector space with a basis, with an ordered basis given by say v1 to vn, we can write a 

vector, can write v. So, given v in capital V, we can write v has been equal to a1 v1 plus up to 

an vn, where ais are scalars, uniquely we can write that. We can write in a unique manner v 

as this particular linear combination. However, it is very difficult, it is usually difficult to 

compute ai explicitly, you know even in small vector spaces or in vector spaces like R3 R4 

itself in R2 I would not say it is very difficult, but in R3, R4 itself it starts becoming quite 

tedious. 
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So, in order to capture what I said a few minutes back, let me state it down as a proposition. 

So, let V be an inner product space and suppose beta equal to v1 to vn be an orthonormal 

basis and let v be a vector in capital V, then v is equal to a1 v1 plus up to an vn, where ai is 

just the inner product of v with vi. So, we know explicitly what the coefficients of each of vis 

are in the linear combination of v1 to vn which is equal to v. So, let us give a proof of this 

proposition. So, suppose, so if v is equal to a1 v1 plus up to an vn, suppose this is the case 

and let us look at what is the inner product of v with say vi. 
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Then inner product of v with vi will just be the inner product of a1 v1 plus up to an vn inner 



product of that with vi, but what is this. This is equal to a1 times inner product of v1 with vi 

plus a2 times the inner product of v2 with vi plus up to an times inner product of vn with vi. 

But again, beta is an orthonormal, so inner product of vi with vij is 0, if i is not equal to j. So, 

this is just going to be equal to, we have already used this trick once before. 

So, illustrate the power of it I had given the alternate proof earlier and this is just ai times the 

length of vi square which is 1 and therefore this is equal to ai and that is precisely what we 

had set out to prove. So, this makes a lot of things quite simple for us. So, for example if v is 

some vector. 
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So, let me just say that we have proved it. So, suppose v is in capital V and then we are 

interested in what is the column vector of representation of v with respect to beta, then this is 

just equal to, this is just equal to the column vector which is given by the inner product of v 

with v1 v with v2 and so on v with vn. So, we now have an explicit column vector 

representation of v with respect to beta.  
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Even better, suppose so if T from V to W be a linear transformation. This also makes 

computing the matrix of T easier if W is an inner product space, where V and W are vector 

spaces over F transformation and suppose beta, gamma be ordered basis of V and W 

respectively.  

Suppose further, suppose further that gamma is an orthonormal basis, then if you notice what 

T beta, gamma is. I will just write it as this, this is just going to be Tv1 gamma Tvn gamma, 

where beta is equal to v1 to vn is the ordered basis of v. So, we have written the column 

vector representation of each of Tv1, Tv2 up to Tvn and that will be the columns of our 

matrix. So, let us now look at a few examples of what we just did. 
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So, we have proved that given an inner product space and given an orthonormal basis. If we 

have any vector v in, so if we have a linear combination of v1 to vn giving vectors in v, then 

we know exactly what that linear combination is. So, in particular in R2, if beta is just say 1, 

0 and 0, 1 here we do not really need to do this exercise, because it is quite straightforward 

already.  

If you know if v is equal to say x, y then inner product of v with let us call this v1 and let us 

call this v1 as 1, 0 and v2 is 0, 1 v with v1 will just be the inner product of x, y and 1, 0 which 

is equal to x and similarly v with v, let me write v1 very carefully, v2 here this is just going to 

be similarly y and therefore we know that this is, therefore v is equal to x times v1 plus y 

times v2 which we know. So maybe I should not have written v1, v2 that is the standard basis 

and I think we had given E1, E2 as the notation for it, but that is okay. 
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And let us look at something which is more complicated, this was quite straightforward. So 

let us look at another example where say beta prime is something like 3 by 5, 4 by 5 like we 

were considering earlier, this vector so let us call it some names, so this is v1 and v2 is minus 

of 4 by 5 and 3 by 5. So, let us take the simplest vector 1, 0 which we can consider. Let v be 

equal to 1, 0 and we would like to write v as a linear combination of v1 and v2.  

This itself we have slightly increased the complication because you will now have to write 

down a linear set of linear equations and solve for them to get hold of what the coefficients 

would be, but now we have a tool. We know that the coefficient will just turn out to be v. So, 

let me write a to be equal to, what is v1? Let us calculate it explicitly, what is this? This is 

just 1, 0 inner product of 1, 0 with 3 by 5, 4 by 5 which is equal to 3 by 5 and how about the 

inner product of v with v2, it will just turn out to be equal, let me not write too much it is just 

minus of 4 by 5 and therefore we know. 
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Therefore, by what we just did, this is equal to 3 by 5 times 3 by 5, 4 by 5 minus 4 by 5 times 

minus of 4 by 5, 3 by 5 and you can check that this is actually the case. So, without going 

down to solving a set of linear equations this is making our life much easier. It only gets 

better actually with higher the dimension, the complexity starts coming down accordingly. 

Let us now look at one more example which is of great importance. 
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In general, to both the mathematical community and others, so even in engineering this 

example is of great interest. So, let us consider the vector space, let V be the vector space C, 

0, 1, c and let us consider a collection of vectors. So, this example let me just put here the 



name as Fourier Series. This is a standard a Fourier, a course in Fourier analysis is there in 

graduate study. 

So, because of the vastness of the subject, so this is just skimming over the tip of the iceberg, 

but nevertheless it is a good place to give an example. So, let us consider the vector space if 

you recall C 0, 1 to c is the vector space of all continuous functions from 0, 1 complex valued 

continuous functions and let us consider the following collection of vectors. Let consider the 

collection of vectors, collection of vectors v1 to be say vk let me put it as vk. 

This is just e to the power 2 pi ikx. So, vk is a function, remember so this is vk of x is defined 

to be e to the power 2 pi ikx and this is being done for each integer. So, not just positive 

numbers not just natural numbers for k is equal to 0, for k is equal to minus 6, minus 10 for 

all such integers we are defining vk of x to be e to the power 2 pi ikx. So, let us see what is 

the, what are the properties of these collection of vectors vk of x, so if you and what is the 

inner product? 
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So, let us consider the inner product, so before I mentioned the inner product if I have given 

vk, does not really make sense, inner product, of course it makes sense, but why these 

functions that will not be justified. The inner product is given by f, g the inner product of this 

is already defined once in the previous week. This is just the integral of f, g bar. So, let us see 

what happens to our vks. 

So, if you look at vk, vk for any k this is just going to be integral of vk of x, vk of x bar. So, 



this is e to the power 2 pi ix times e to the power 2 pi ikx from 0 to 1 and e to the power 2 pi 

ikx bar dx, this is exactly what our integral will be. But then what is the bar. If you go back 

and see, this is just cos 2 pi ikx plus i times 2 pi ikx, which will turn out to be.  
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So, this is just, I will leave it to you, to check that this is integral 0 to 1 e to the power 2 pi ikx 

times e to the power minus 2 pi ikx dx and this will be e to the power 2 pi ikx minus 2 pi ikx 

dx, which is e to the power 0, which is integral of 1 dx, where the limits are from 0 to 1 

which will just turn out to be 1. So, length of vk square is equal to 1. So, this is already a unit 

vector, it is normalized. This is a normalized vector. How about the inner product of vk with 

vj.  
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So, let us look at what is vk inner product with vj for j not equal to k. So, for j not equal to k. 

Let us look at what this is, this is just inner product of integral from 0 to 1 e to the power 2 pi 

ikx, let me jump a few steps and directly write as e to the power 2 pi i minus of e to the power 

2 pi ijx. So, notice that the I featuring in the exponent here is the square root of minus 1 and it 

is not an index. However, k and j are indices.  
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So, this, so this is equal to integral 0 to 1 e to the power 2 pi i times k minus j times x dx and 

this is just e to the power 2 pi ik minus jx by 2 pi i times k minus j from 0 to 1. This is exactly 

what the integral will turn out to be. You can check that this is just 1 minus 1 by 2 pi ik minus 

j which is equal to 0.  

The one, the first one coming because e to the power 2 pi i times, any integer is 1 and e to the 

power 0 is also 1. So, the second one is from e to the power 0 and this is equal to 0. So, what 

we have established let me just go back and what we just proved. We showed that the inner 

product of vk which itself is 1 and the inner product of vk with vj is 0 for all k not equal to j.  
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So, hence the collection of vk or let me put it this way v minus 3, v minus 2, v minus 1, v0, 

v1 dot, dot, dot. This is an infinite collection of orthonormal vectors. So, we will not talk 

about Fourier Series right now because that is beyond the scope of this course, we will have 

to develop convergence of an infinite series and such things, but rather what we will do is let 

us look at specific subspace.  
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So, define Tn to be the span of v0, v1 up to vn. So, these are called the trigonometric 

polynomials called the trigonometric polynomials. So, what will be a typical element here, so 

any element here. So, a typical element f will be of the type a1 a0 v0 plus a1 v1 plus up to an 



vn and if we write it down, this is just a0 plus a1 times e to the power 2 pi i x plus a two times 

e to the power 2 pi i into 2x and up to an e to the power 2 pi inx. So, this is something like a 

polynomial.  

So, a0 plus a1x a1 times say t plus a2 times t square and so on. So, that is why it is called 

trigonometric polynomials. So, let us now implement whatever we have just developed to an 

arbitrary element in Tn. 
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So, then for f inner product with vk, this is just going to give you the, by whatever we just 

developed this is our ak, but what is f inner product with vk. This is inner product of f with e 

to the power 2 pi ikx dx. So, I should be little more careful. This is 0 to 1 f of x e to the power 

2 pi i minus e to the power minus 2 pi i kx dx. These are called the Fourier coefficients of f, 

are called the Fourier coefficients of f. 
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And we also have the famous formula which says that, if you look at the length of norm f 

square is equal to summation mod ai square. This if you write down with ai is now known 

explicitly. If you write it down like this, this is called the Plancherel formula. So, in the next 

video, we will discuss orthogonality in much greater detail by talking about when two vectors 

of spaces can be orthogonal to each other. 


