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So, in the last week, we were discussing eigenvectors and eigenvalues of given linear 

transformation. And we also discussed techniques to compute eigenvalues of a given linear 

transformation by considering its characteristic polynomial, and we studied these 

characteristic polynomials in great detail to discuss potential diagonalizability of a given 

linear operator. 

So, in this week however, we take off in a slightly different direction. We would like to 

discuss potential generalization of the notion of length that we are familiar with in say R2 or 

in R3. So, for example, if a vector 2, 3 comma 4 is given, in3 comma 4 in R2 is given to you. 

We know that the distance of or the length of this vector to 3 comma 4 is square root of 3 

square plus 4 square which is 5.  

We would like to ask the following question, can this notion of length which we are quite 

familiar with in R2, can this notion be generalized to a abstract vector space. So, given an 

arbitrary vector space, can we say about a notion of length in that vector space. So, that will 

be the goal of our next immediate goal. However, before we venture into answering any of 

these questions, we would like to discuss vector spaces over a different field of scalars than 

real numbers. 
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So, let us begin by recalling what our basic properties of complex numbers. So, recall that C 

which is the set of all elements of the type a plus ib, a and b are real numbers. So, C comes 

with a natural notion of addition and multiplication. So, it has 2 operations what are the 

addition of 2 complex numbers and multiplication. And how are they defined? So, addition 

let us see how addition is defined. If, say a plus id is added to C plus id. 

This is just a plus c plus i times, this is not d, I am sorry, this is b. So, i times b plus d and 

how about multiplication? Multiplication is defined, as a plus ib times c plus id is equal to ac 

minus bd plus i times ad plus bc. So, just like in the case of real numbers, the complex 

numbers with these, these or rather the operations that we just defined on the complex 

numbers also satisfies all those good properties, which we had discussed in the very first 

week. 
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So, complex numbers, these operations rather satisfy all these properties. What are the 

properties that real numbers satisfied with addition and multiplication? That it was 

commutative. If you take 2 complex numbers, the order in which we add does not matter the 

order in which we multiply did not matter associativity, if we add or multiply 3 complex 

numbers, associativity, the order the, which one we multiplied first and which one was 

multiplied to it, or which two we added first and the third one which was added to the first, 

the sum of the first two did not matter.  

So, associativity was there and given any complex number, there is an additive inverse, there 

is an additive inverse. So, if a plus ib is given to you, minus a plus i times minus b is an 



additive inverse, oh before, additive inverse, I should mention additive identity. So, 0 plus i 

times 0, there exists an additive identity. If you add any complex number to 0, which is 0 plus 

i times 0, we get back the complex number. There exists an additive identity, which is 0 plus i 

times 0. 

Every complex number has an additive inverse. What more? There was a multiplicative 

identity, one in the case of real numbers, here also 1 plus 0 times i, which we will denote as 1 

itself again. 1 is the multiplicative identity. What more? Every non-zero complex number, 

leave that as an exercise for you to explicitly calculate the inverse, every non zero, so am I 

writing the number wrong, Yes, I am this is 5. Every non zero complex number has an 

inverse, as a multiplicative inverse. 

So, let me write it specifically multiplicative inverse and finally, the multiplication distributes 

over addition. So, all those properties which real numbers with it is. So, all those properties 

which real numbers along with its multiplication or addition and multiplication operation 

satisfied, satisfied by complex numbers as well. So, we may consider complex numbers with 

the operations of addition and multiplication, which we just defined. We can consider 

complex numbers also as a potential candidate for being the field of scalars. So, we could, so 

the complex numbers, we may write it down here. 

We could also consider the complex numbers as the field of scalars in order to define a vector 

space in order to do define a vector space. So, we could define a vector space over complex 

numbers, sometimes it is called, such vector spaces are called complex vector spaces, then 

the definition will be the exact same definition as we have given, instead of considering 

scalars to be real numbers. Now, our scalars will be complex numbers, the same definition 

can really be taken as a definition for vector spaces over C as well. 
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Let us look at a few examples. So, I will not spend too much time discussing the examples 

again, because we are quite familiar now with the notion of vector spaces. So, are over the 

field of scalars being real numbers, the notion, the idea of vector space over complex 

numbers is extremely identical to those notions which we have discussed in detail. We just 

have to be careful that whenever we consider a scalar now, we are considering complex 

numbers, if it is a vector space over C. 

So, the first example should be the 0-vector space, this is also a vector space over are, over C 

is vector space, so over C. So, you could take any complex number define the scalar 

multiplication, addition vector addition could be defined as in the earlier case, take any 

complex number define the scalar multiplication of that complex number to 0 as 0 itself. And 

with these operations, the set will turn out to be a vector space over C. 

Example 2, so I will not spend any more time discussing the properties 1 to 8. Of course, all 

those have to be settled, all those have to be satisfied and it is a job for you to do that. This 

time however, you should be careful, we have to check all those properties 1 to 8 with scalars 

from complex numbers, all these properties should be satisfied for scalars being complex 

numbers. 

How about the second example, C itself is a vector space. So, V is equal to C is a vector 

space over C, how is the vector addition, the usual addition and how is the scalar 

multiplication, take a scalar which is not a complex number and take a vector which is again 



a complex number, the scalar multiplication will just turn out to be the normal multiplication, 

this becomes a vector space over C. 
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Next example will be the Cartesian product of C with itself n times, you see there is an 

analogous example we are taking analogous examples. So, over there, Rn was the example of 

the linear space, here over C, we would like to consider Cn which will be just Z1 to Zn where 

each of these Zi are complex numbers and how is addition defined? Addition is defined 

component wise. How is scalar multiplication defined? Again, it is defined component wise. 

So, let me not venture into that. Let me not spend more time on that this is a vector space 

over C. How about polynomials? So, that is the next example. 

So, let me write Pn of C. So, V is Pn of C in this case. So, notice over there it was Pn of R 

what would be the, what would be your guess on the definition of Pn of C? This is going to 

be all polynomials of degree less than or equal to n. However, this time we are going to have 

coefficients from complex numbers. So, polynomials with coefficients, with degree less than 

or equal to n, less than or equal to n and coefficients in C. And examples of what is the 

addition here, right before going to the next example, the addition is just like addition, usual 

addition in Pn of R just in this case, we are adding complex coefficients rather than real 

coefficients. 
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Similarly, scalar multiplication is defined just like in Pn of R. However, now, we are 

multiplying a scalar which is a complex number to each of the coefficients. Similarly, P of C 

is the space of all polynomials with complex coefficients. So, let me write more, in a more 

compact manner. And I write complex coefficients it means coefficients in C. So, the 

coefficients of polynomials here could be complex numbers. All right, what other examples? 

Okay next example, Example 6. Let us say we considered, continuous functions, real valued 

continuous functions. 

Now, let us consider, let me put a comma and put a C to denote that now we are considering 

complex valued continuous functions. So, this is defined to be the set of all f from 0, 1 to C 

such that f is continuous. How is the addition defined? Again, it will be defined point wise f 

plus g at a point x will be f of x plus g of x. Now, notice that f of x is a complex number g of 

f is also a complex number, you can add two complex numbers and get back a complex 

number. 

And therefore, f plus g will now be a function from 0, 1 and into C. And a real analysis 

course will tell you that some of 2 such complex valued continuous functions will again be a 

continuous function. Similarly, we define scalar multiplication, we take a complex number, 

let us call it alpha, alpha times f at a point x will be alpha times f of x, alpha is a complex 

number f of x is a complex number, a multiplication will give you a complex number, this 

sends a map from 0, 1 to C. And again, a course in real analysis will tell you that this is also a 

complex number. 



(Refer Slide Time: 16:50) 

 

The domain was not special, we could have so maybe 6 prime examples 6 prime, could have 

been something let us say C minus 1, 1 to C as well. So, this is just going to be f from minus 

1. 1 comma minus 1 comma 1 into C and such that f is continuous and defined addition and 

scalar multiplication similarly. Okay, more examples, a very important example is M m cross 

n of C. Again, I do not need to really write it down because this is just the matrices a 11 to a 1 

n, a m1 to a mn. 

But now our aij are not just real numbers, they are potentially complex numbers. And the 

vector addition is defined component wise, scalar multiplication is also different component 

wise. So, yes so, we could consider vector spaces over complex numbers and there are so 

many examples as we can see. Right. So, if you go back to our previous week material and 

carefully look into it. We were defining a linear combination of vectors in a vector space.  
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And how was a linear combination defined, the linear combination was defined as a vector 

linear combination was defined of say V1 to Vn was defined a1 V1 plus a2, V2 to an, Vn. 

And we were demanding that ai b scalars. Now we could define a linear combination. With, 

in a complex vector space, in a vector space over C, could be defined, is defined rather 

analogously, defined with coefficients or scalars being complex numbers. So, in a vector 

space over C, in one of these examples, which we have just described, a linear combination 

could be defined analogously by or rather the definition was already given in a very general 

case, where in we just use the word scalar. 

Here our scalar now is complex numbers, we could now define the or rather we do not need 

to define again, we have already defined the notion of linear independence goes through 

exactly how we had defined earlier. We could also define span, span now will be all linear 

combinations with the coefficients or the scalars being complex numbers, so span makes 

sense, basis makes sense, basis of a complex vector space will be a linearly independent set 

which spans over a given vector space. 

We could talk about the replacement theorem, the dimension theorem, before coming to the 

dimension theorem, replacement theorem and the fact that a basis, if there is a finite basis, 

every other basis will have the same size all these results if you go back and check carefully, 

the proofs, the statement and the proofs will go through for the field of scalars being complex 

numbers. Main reason being that we have really not used any specific properties of the field 

of scalars to prove any of these results. 



(Refer Slide Time: 23:25) 

 

We have just used the properties of the vector space operations for our results to be proved, 

right. So, we could also define or rather we have already defined what linear transformations 

are between vector spaces over a given, so, we have, so, the definitions of linear 

transformation between vector spaces V and W over complex numbers is given analogously. 

So, the structures are preserved, so vector addition is preserved, there is nothing new there. 

However, when scalar multiplication is being preserved now, we demand that the scalar will 

be a complex number, right. So, a thing to note here is that we cannot talk about linear 

transformations from a vector space over the complex numbers to a vector space over the real 

numbers. So, if V is a vector space over C and W is a vector space over r, it does not make 

sense to demand that there x is a linear transformation from V to W, because the scalar 

multiplication in V is with respect to complex numbers. And the scalar multiplication in W is 

with respect to real numbers. 

The scalar multiplication of a complex number and a vector in W does not make sense. So, 

we cannot even demand or we cannot even give sense to a definition of a linear 

transformation from a vector space over C to a vector space over R or for that matter, a vector 

space over R to a vector space over C. So, whenever we talk about linear transformations, it 

will be with, it will be over a, over the same field of scalars. Either it will be over the field of 

scalars being real numbers, vector spaces over real numbers or it will be between vector 

spaces over complex numbers. 



So, all these statements and theorems, which we have given about linear transformations in 

the last many weeks, they hold for linear transformation between vector spaces over C as well, 

should actually go back and carefully look at each of these statements and proves and notice 

that the proof really works. Even if we are considering complex vector spaces. So, let me just 

note that all the theorems and proofs given in the last weeks, last few weeks hold for linear 

transformations between vector spaces over C. So, even for complex vector spaces or vector 

spaces over the field of scalars being complex numbers, all these theorems hold. 

For example, dimension theorem holds, all the consequences of dimension theorem. As for 

example, in a complex vector space, if the dimension of the vector space is the complex, the 

dimension is n as a complex vector space then, if you consider a set of n linearly independent 

vectors in the vector space V then it should necessarily be a basis. 

So, not just the results about dimension theorem or its consequences, every definition and 

every result that followed for example, eigenvalues, eigenvectors etcetera can be defined in 

the case of complex vector spaces and linear transformation between vector spaces over C. 

So, in this case now eigenvalue will just turn out to be a complex number instead of a real 

number. It could be a real number which is also a complex number. But, do keep in mind that 

when we are considering linear operators from a vector space over C to itself are eigenvalues 

could be complex numbers. 
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So, eigenvectors will, so, the matrix there could be, so, we can we also have the notion of the 

matrix associated to a linear transformation will now just turn out to be an m cross n matrix 



with entries in C, the associated, matrix associated to a linear transformation with respect to 

basis in the complex vector spaces V and W, finite dimensional complex, complex vector 

spaces V and W will now be an m cross n matrix, where m and n are respectively dimensions 

of W and V. 

But now the entries will be in C. So, instead of real entries it could have now complex entries, 

we could also talk about as already noted, we can define eigenvectors, eigenvalues, 

eigenspaces, the characteristic polynomial and all related notions analogously that notions 

similarly with scalars being complex numbers. So, in particular eigenvalues could now be 

complex numbers. Our characteristic polynomial of an m cross n matrix over C or a linear 

operator on a vector space V over C will now be a polynomial or complex number. 

And not just necessarily, not just over real numbers, it could be having coefficients which are 

complex numbers. Of course, the impact of considering vector spaces over C, the impact of 

complex numbers and its operations are the various properties of complex numbers and its 

operations does have some implication on, on the various properties of the linear 

transformation. However, we will not explore too much in that direction in this course.  

So, what I meant is, for example, if our linear operator is on a vector space V over C, then if 

you consider the characteristic polynomial it will be an n degree polynomial over C. And the 

complex numbers have an added advantage as compared to the real numbers that you look at 

any polynomial it should necessarily split into real factors, oh sorry linear factors. That is not 

necessarily the case in the case of r. For example, when you look at lambda square plus 1, it 

does not split, but in C every polynomial splits into linear factors. 

So, therefore the question of diagonalizability, whether, if our characteristic polynomial splits 

or not will not be a problem of concern for us. However, we will not venture too much in that 

direction. Now, let us go ahead and study more ideas and more notions on vector spaces and 

not restrict in the, in the direction of what will be the implication of various properties of 

complex numbers. 
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All right. So, let me stop by making a remark here, by making an observation here. So, let me 

just call it a remark. So, if you consider V to be the complex, set of complex numbers. Then 

so, let V be the set of complex numbers, then V is both a vector space over C, so a vector 

space over C as has already been noted. And if you go back to the first week and look at our 

examples, it is also a vector space over R and a vector space over R. 

So, the same set C or V in this case is a vector space over C or the field of scale has been 

considered as complex numbers and it is also a vector space over R when the field of scalars 

is being considered over R. However, it should be kept in mind that even though it is the 

same set which is becoming a real vector space or a complex vector space, both are not the 

same. These vector spaces are not the same, are not the same. So, remember that vector space 

is not just the set, it is a set with two more operations, it is the collection of these three objects, 

the set and the two operations which makes it into a vector space. 

So, here are the operations change, when you are considering it as a vector space over R and 

when we considering it as a vector space over C, the operations change and that is precisely 

what it means to say that the vector spaces are not the same. Just to give you an idea about 

why it is not the same, I will allow you to check it, check that the, check a basis for V over R. 
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So, check that I just give you an example. 1 comma i is a basis of V or let me just write V in 

this case it is C over R. However, note that this set is not even. So, let, let me call it B, note 

that B, beta is not linearly independent. So, these are two vectors in C, right. But these 

vectors are not linearly independent when you consider V as a vector space over R, when V is 

considered as a vector space over C. So, when you are considering it as a vector space over C, 

this is not linearly independent. 
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For example, we would like to look at a times 1 plus b times i to be equal to 0. And 

remember that we now want a comma b to be C not both, and both are not zero such that both 

a and b are not, are not 0. So, a moment's thought I will reveal that a equal to 1 and b equal to 



i. Both are complex numbers. If you put a equal to 1 and b equal to i, what will be the relation 

that we just wrote? It will be 1 times 1, which is 1 plus i times i, which is minus 1 is equal to 

0. So, this is not linearly independent. 

So, I would also leave you to check that. 1 is a basis, the set beta prime, which is equal to 1 is 

a basis of V over C. So, if you consider a vector… the vector space of complex numbers over 

C it has dimension 1. So, dimension of V over C here is equal to 1, what was the dimension 

here? Hence, dimension of the vector space V as a vector space over R, this is equal to 2. 

So, they are not the same, they are different vector spaces when considered and it should not 

be confused. So, whenever there is a vector space involved, from now on, we will keep track 

of whether it is a vector space over real numbers or whether it is a vector space over complex 

numbers. And we will now jump into the notion of an inner product space, which is the right 

object to look at in order to talk about links in a vector space. 


