Linear Algebra
Professor Pranav Haridas
Kerala School of Mathematics, Kozhikode
Lecture 8.4
Invariant subspaces

So, let us next discuss the notion of subspaces which are invariant under a given linear
transformation. We will use that notion to prove a very celebrated theorem called the Cayley-
Hamilton theorem. So, let us begin by defining the notion of a subspace which is invariant

under a given linear transformation.
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So, definition, so let T be a linear operator, let T be a linear transformation which is same as a
linear operator from vector space to itself. We say that subspace W is invariant under T if it is
preserved by T or in other words, if every vector of W is sent to W itself, then it is called as a
subspace which is invariant under T. So, a subspace W is said to be invariant under T, or T
invariant both terminologies are used if T v belongs to W for all v in capital W. So, the

compact way of saying this is that T of W is contained in W, so let us look at a few examples.
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The first example we would like to consider is always a 0 vector space. So, 0 is a T invariant
subspace, 0 vector subspace is T invariant for every linear operator T. So, notice that the
invariance, the property of invariance is dependent on T. If T changes, if you take a subspace
of say R n, which is invariant under one operator, it need not be invariant under a different
operator. However, 0 vector space or 0 subspace is a subspace which T invariant under every
linear operator. So, the entire vector space V is the invariant for every linear operator T. So,

what more?
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So, given any linear operator, consider W to be the null space of T, then notice that T v is

equal to O for every v in W, and 0 in particular belongs to W and therefore, it is trivially a



invariant subspace in a similar W equal to R of T, which is the range of T is a T invariant of

subspace.
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So, more examples. So, let Lambda be an eigenvalue or let me put it this way, let v be an
eigenvector with eigenvalue Lambda and then let w be the span of the set consisting of v, s is
v say span of 1 vector. So, this consists of all vectors of the type A times V, and what is going
to be T of A times V by linearity this is a Lambda v which is equal to Lambda times a v,
which you notice again belongs to the span of v itself, so hence, W is the T invariant that we
could have set more, said that E Lambda, the Eigen space corresponding to Lambda is T

invariant.
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Same argument given in example 5 will tell us that E Lambda is also T invariant. So, one
reason why we should be considering T invariant subspaces is because you take the linear
operator T and restrict it to the subspace W. And we can think of it as a linear operator on W.
So, if T restricted to W is the restriction of T to the subspace W, then T restricted to W is a

linear operator on W.
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So, T restricted to W can be studied as an independent linear operator, which is operating on
the subspace W. So, let us prove a theorem to indicate that this is quite useful. So, let T be a
Linear Operator on V, and W be a T invariant subspace, then the characteristic polynomial of

T restricted to W divides the characteristic polynomial.

So, let me just write Char for characteristic and poly for polynomial of T. So, let us look at a
proof, so this theorem tells us that by studying the restriction of the linear operator to an
invariant subspace we get some information about the characteristic polynomial, we get a

hold of at least one factor of the characteristic polynomial.

Let us look at a proof of this, so let us start with basis for our subspace W. So, let alpha equal
to v 1 to v k be an ordered basis of W. Now, this is linearly independent set, this is a linearly
independent set which is sitting in capital VV and hence it will be sitting inside a basis. So,
extend this to a basis and Beta equal tov 1 to v k, v k plus 1, to v n.

So, let me add at this point that even though I am not writing it, we will consider only finite
dimensional vector spaces. So, let me write here that it is a linear operator on finite

dimensional, we are indeed talking about the characteristic polynomials. Let me write v dot s



for vector space but nevertheless let me put it in the criterion. So, Beta we obtained by

extending our basis alpha, Beta be a basis of V Beta be a basis of again ordered basis of V.
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Let us look at T W with respect to Alpha that will be let us say that is some matrix B, then let
us now look at what is T with respect to Beta. | leave it to you to check that this will be a
matrix B which is of course, k cross k matrix. And there will be a 0 matrix consisting of n
minus k cross k vector elements and then there is a C and that is a D. C is k cross n minus k
and this is going to be the n minus k cross n minus k, this is matrix of T with respect to Beta

will be here.

So, to talk about the characteristic polynomial, we have to look at the determinant of so let f
of Lambda be the characteristic polynomial of T and G of Lambda be the characteristic
polynomial of T restricted to W. So, let us call these things this as A. So, g of Lambda or
rather f of Lambda is equal to determinant of A minus Lambda | n and g of Lambda is equal

to determinant of B minus Lambda | k.
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Let us analyse what is determinant of A minus Lambda I n will be, this is equal to this is what
f Lambda is. This is equal to determinant of, let us look at what A is, A has four blocks, the
bottom block has a 0, left bottom block and the right top block will not be affected at all by
subtracting Lambda I, so this is just going to be B minus Lambda | k, that will be a C that
will be a 0 here and there will be T minus Lambda I n minus k. And we know exactly what
this determinant is by 1 of the exercises earlier, this is going to be equal to the determinant of

B minus Lambda | k times the determinant of D minus Lambda | n - k.
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But what is this? This is equal to g of Lambda and this is going to be some polynomial P of

Lambda, and hence g of Lambda divides f of Lambda and we are done with the proof. So, if



we have a subspace w which is invariant under T and if we restrict our attention to restrict our
T to W and look at the characteristic polynomial there, it divides the characteristic
polynomial of T itself. We will use this result and a few more other observations to very
particular subspaces of V which are invariant under T. So, let us look at one more example

another example.

Example of T invariant subspace. So, let v be a vector in capital V, then let W, and define W
to be the span of v, Tv, T 2 vand soon. So, whatis T 2vwhere Tkvisjust Tof Tof Tof T
v, what is that? T is a linear operator from V to itself so, T v is a vector in capital V, so we
can apply T to T v that will be T square v. T k v is similarly done k times. So, get hold of a
vector v and look at all powers of T applied to V and then look at the span of this and | leave

it as an exercise for you.
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W is invariant under T and definition, the vector space the subspace W is called the T cyclic
subspace generated by v, the subspace W is called the T cyclic subspace generated by small
v. So, what can we say about this particular T cyclic sub subspace? This particular T invariant
subspace, this T invariant subspace has some very nice properties, the first among them is
that we have a very good control over what the basis of such a subspace is. And secondly, we

know how the characteristic polynomial looks like when T is restricted to W.
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So, let us prove a theorem which captures all the information which | just said. So, let W be a
T cyclic subspace generated by small v. Suppose, dimension of W is equal to say k, thenv, T
v upto T kminus 1 v is a basis of W, now exactly what the basis of W will look like. Not just
that. Moreover, if so t to the power k v will be in the span of T v up to T k minus 1 v, and

therefore we can write it as a linear combination.

So,ifa0vplusalTvplusakminus 1Tk minus1vplusTKkvisequal to 0, suppose this
is the 0 vector, suppose this is the linear combination that gives us minus of T k v, then the
characteristic polynomial of T restricted to W is given by minus 1 to the power k times a 0
plus a 1 Lambda which is given by g of Lambda, which is equal to minus 1 to the power k
times a O plus a 1 Lambda plus a k minus 1 Lambda to the power k minus 1 plus Lambda to

the power k.

Let us give a proof, so this is a new idea maybe so let us see. So, let j be the smallest positive
integer such that v, T v, T square v up to T to the power j minus 1 V is linearly independent.
So, let j be the largest positive integer, smallest would just be j equal to 0 so that is not useful,
J be the largest positive integer such that v T v up to T to the power j minus 1 v, this is a

linearly independent set.

So, let us put one added assumption in the theorem that v is by a non-zero vector v to just
avoid unnecessary complications, non-zero vector v. When v is 0 there is nothing interesting

that happens because then it will just be the zero vector.
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So, let j be the largest positive integer such that v, T v, up to the power j minus 1 v is linearly
independent. Notice that for any value less than j, this is going to be again linearly
independent because it is a subset of linear independent set. And also note that then T to the
power j v belongs to the span of v T v up to T to the power j minus 1 v.

So, remember that T to the power j v means that T applied to T v apply so T applied to T
applied to T applied to finally T v j minus 1 time. So, that is what T to the power j v means
and that is in the span of v, T v up to T to the power j minus 1. So, let us assume that so we
will prove that. So, the claim is that T | v belongs to the span of v, T v up to T to the power j

minus 1 V for all | greater than or equal to j.
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So, we will prove this by an induction argument. So, we already know that T to the power j v
belongs to the span. So, proof let us prove by induction, so let us assume that the claim is
proved for up to I minus 1, we will prove that T to the power | v also belongs to the base case
where | is equal to j has been here the base case remember is | is equal to j.

Let us now prove that T to the power | v also belongs to the span. But then T to the power | v
is nothing but T acting on T to the power | minus 1 v by the very definition of T to the power
I v. And we know that T to the power | minus 1 v belongs to the span of, | would have given

it some name so that | did not have to write it down so many times, but that is okay.

But that implies, t to the power | minus 1 v is equal to maybe b 1 v plus or b O v plus b j
minus 1 T j minus 1 v. And hence, T to the power | v will just be equal to b O T v plus b j
minus 2t j minus 1 v plus b j minus 1 times T j of v, but T j of v we already noted belongs to
the span of v, T v up to T to the power j minus 1 v, and therefore, that will be a linear
combination of these vectors. Therefore, this belongs to the span of v, T v up to T to the j

minus 1 v and therefore we are done.
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But what does that mean? This means that T to the power | v belongs to, | should have really
written a notation for it, this for all I, which implies that what is the name given for T cyclic
subgroup is called W that means that w is contained in span of v 1to T v j minus 1 v, but this
is again contained in W, because each of these are in w and therefore this one should be
contained in that. Therefore, span of v 1 to T j minus 1 v is equal to W, which has okay, we
will come to that. So, what do we know now? We know that we v, T v up to T to the power j
minus 1 v is both a spanning set and linearly independent and therefore it is a basis, hence v

to T to the j minus 1 v is a basis of W.

What do we know about the basis of W? Know that it has k elements, since dimension of W
is equal to k, we have j is equal to k. And we are done because recall what we were trying to

prove.
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We were trying to prove that v, T v up to T to the power k minus 1 v is the basis of W, and

that is precisely what we have ended up proving. We are not done, we have to prove the

second part, this part we have to show or we have to get explicitly how the characteristic

polynomial will look like. So, to do that, again, let us look at what we know about v, T v and

SO on.
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Notice that T of T | v is equal to T | plus 1 v for | is equal to O to so T to the power 0 by
convention is the identity map, so this will be up to k minus 1. In fact, it is for all so, let me
not write it this way, let me just say that let T to the power k v be equal to a 0 or minus let me
put it that way, a0 v plusa 1l T v plus up to a k minus 1 T k minus 1 v. Suppose, this is the
linear combination which gives us minus T to the power k v, then a 0 v plus then let us see
then what happens, what is the matrix of T going to look like? We are interested in the matrix
of T restricted to W.

And we know explicitly how this matrix will look like with respect to Beta, where Beta |
should have given it from the beginning, so let me give it a name now, for Beta equal tov, T
v, T to the power k minus 1 v. Suppose Beta is this, let us look at what is T restricted to W

Beta Beta. So, what is T v? T v is the second vector in the order basis.

So, if you notice, we just write it for you, the first column will be the image of v, which is
going to be 0 1 0 up to 0 all the way down. And similarly, T v is going T 2 v which will be a
0 here and so on. And T k minus 2 will be sent to, this is the k minus 1 basis vector or
whereas T k minus 2 of v being sent. T k v is where we will have to worry about, T k v will
just be sent to minus of a 0, minus of a 1, minus of a k minus 1. This is exactly what the

matrix of T restricted to W will be with respect to Beta.
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So, let us see what is then the characteristic polynomial. Let us call it g, g Lambda is given by
determinant of this matrix minus Lambda times | k, which is just going to be equal to, let me
write down the matrix explicitly. So, I know what the matrix is from here, this will be minus
of Lambda 1, 0 all the way down 0 minus Lambda 1 0 all the way down minus Lambda and a
1 and then there will be minus a 0 up to a k minus 2 minus of a k minus 1 minus Lambda.
This is precisely what our expression will look like. So, we will prove that the, so let us do a
cofactor expansion along the first row, this is just going to be equal to minus of Lambda
times the determinant of.
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So, the first row and the first column is deleted and what remains is this, and there will be a 0
minus Lambda 1 0 and so on. And finally there will be a minus of a 1 to minus of a k minus 2
and then there is a k minus k minus Lambda. And how about the last term so there are k
vectors, so this is just going to be minus 1 to the power k plus 1 times minus of a 0 into the
determinant of by deleting the first row and the last column, which will just turn out to be
ones in the diagonal, 0 below minus Lambda in the off diagonal and then O here. And the

determinant here will just be equal to 1.

So, this is equal to V, the determinant of upper triangular matrix will just turn out to be the
product of its diagonal entries. Then what do we do about the first term here? We will use an
induction argument which | will allow you to complete. By an induction argument, this will

be equal to now in this case, it is going to be minus 1 to the power k minus 1 times let us see.

This one starts from a 1, so this is going to be a 1 plus a 2 Lambda plus a k minus k does not
make sense, a k minus 1, Lambda to the power k minus 2 plus Lambda to the power k minus
1. And the term here will just be equal to minus of 1 to the power k plus 2, which is the same
as minus of 1 to the power k times a 0.

And this is nothing but the minus will add up, this will be a minus of 1 to the power k, the a 0
will come here and the Lambda multiplied will give you a 1 Lambda goes up to a k minus 1
Lambda to the power k minus 1 plus Lambda to the power k and we are done. So, when our
subspace W is the T invariant subspace generated by a vector v, we know exactly what the
characteristic polynomial of T restricted to W will look like. So, now we have all the

ingredients that are needed to prove the celebrated Cayley-Hamilton theorem.
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So to do that, let me just develop a few notations. So, given a polynomial say P of Lambda,
which is equal to a 0 plus a 1 Lambda plus a n Lambda to the power n, we define P of T to be
equaltoisaOiplusal T plusan T to the power n. And therefore thus, what is the meaning
of P T acting on a vector V, this is just going to be equal to a 0 I acting on v which is equal to

v plus a 1 acting on T v plus up to a n acting on T to the power n v.

So, this is going to be a linear combination of v T v up to T to the power n v. | will leave it as
an exercise for you to check thatp Tq T of visequal to g T, p T of v for all v in capital V
and polynomials p, comma qg. It is quite straightforward | will leave it as an exercise for you

to take that.
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Now, let us state and prove the Cayley-Hamilton theorem. The Cayley-Hamilton theorem
broadly tells us that any linear operator satisfies its own characteristic polynomial. So, let me
write it down in words, so let VV be a finite dimensional vector space and T be a linear
operator on V with characteristic polynomial f of Lambda, then f of T which we have defined
a few minutes back is the 0 operator. It is the linear transformation, which sends every vector
V to 0. Informally, we say that T satisfies its characteristic polynomial. So, let us give a proof
of this.
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Enough to show that for given a vector v in capital V, f of T v is equal to 0. So, if we do that
by choice our vector v is arbitrary, so this will be satisfied for every v. So, how do we go
about doing this? So to do this, let W be the T cyclic subspace generated by v.
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So, what do we know about the characteristic polynomial of T restricted to W? Then W is
invariant, first observation is that W is invariant under T and suppose a O v plus a 1 v plus a k
minus 1 T k minus 1 v plus T to the power Kk v is equal to 0, then g of Lambda equal to minus
1 to the power k times a O plus a 1 Lambda plus up to Lambda to the power k is the
characteristic polynomial T restricted to W. But what do we know about g of T v. So, let me

write it as star here, star can be rewritten as g of T acting on V being equal to 0 vector.
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We also proved that if W is T invariance subspace, then the characteristic polynomial of T
restricted to W divides the characteristic polynomial of T. So, let f of Lambda be the

characteristic polynomial of T, then by a theorem above where exist a polynomial say P of



Lambda such that f of Lambda is equal to p of Lambda times g of Lambda, where g of

Lambda is the characteristic polynomial of T restricted to W.
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And hence, what is going to be f of T v. That is just going to be equal to p of T times g of T
of v, but this is already equal to 0, this is equal to p of T, the operator acting on the 0 vector,
but any operator takes any linear transformation takes 0 to the 0, therefore this is equal to 0.
And hence f of T is the 0 operator that is the completion of our proof.
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So, I would like to conclude by observing that if we stated Cayley-Hamilton theorem as the

following, let a be an n cross n matrix and f of Lambda be the characteristic polynomial of a,



then f of a is equal to 0, where a to the power n is the product of a with itself n times and f of
a is just the polynomial expression which involves a to the power n, a to the power n minus 1

and up to identity.



