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Quotient Spaces 

So in this video we discuss the quotient space of vector space V with respect to a subspace U. 

We will then define a vector addition and scalar multiplication on this quotient space, make it 

into a vector space and then notice that the vector space V mod U very naturally interacts 

with the vector space V. So, let us begin by considering a vector space V. 
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So let V be a vector space and U be a subspace of V. Consider the following set. Define the 

set, for an element small v in capital V, for small v in capital V, define the set small v plus 

capital U. Remember that, as of now small v plus capital U does not make any sense because 

capital U is a subspace, small v is just a vector in capital V. We are defining it to be a set, to 

be a set of in some sense translates of U. 

This is the collection of all small v plus small U where small u belongs to capital U. In some 

sense, we have translated our capital U by V. So, let us look at an example to understand 

what we have just done. Let us look at R2. 
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In R2, consider U to be this subspace which is x, x, where x belongs to R. So let me just draw 

it for you in the Cartesian coordinates which you will be familiar from high school. 

So this, there is a Cartesian coordinate like this and the green denotes the subspace U. The 

line x is equal to y. So, let us pick some v. Let v be equal to say 2, 0 then, v plus U is nothing 

but x plus 2, x such that x belongs to R. Let me use some other colour, let me use blue to tell 

you that that is going to be this line. It did not come out well, but you can imagine that there 

are parallel lines. 

The green and blue are parallel lines, the blue is actually v plus u and the green is basically u. 

So that is why it makes sense to think of v plus u as in, as a translate of u in some sense.  
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So, we define the quotient of  v by u to be the collection of all such sets of the type (())(4:16). 

So, we define the quotient space v modulo u, it is many times called, V mod u in short. V 

modulo u, that is what the terminology is pronounced as or called. We define the quotient 

space V mod u to be it is defined as the set of all v plus capital U, such that v is varying in 

capital V. So, let me give it a name, an element of V mod u is called an affine subset, affine 

subset of V corresponding to u and V mod u is the collection of all such affine subsets. 

(Refer Slide Time 5:46) 

 



 

So, in the example we just described, what would be V mod u? So in the above example, R2 

and u is x, x, the above example R2 mod u will just be all the translates. So it is going to be 

the collection of all lines in R2 of slope 1. You carefully think about it and the Cartesian 

coordinates, it will capture all those lines which has slope 1. So we have described what the 

quotient space is. 

As of now remember that this is just a set. There is no vector space structure which we have 

defined on R2 mod u or rather V mod u in general. That will be our next goal, but before we 

get into the definition of vector space and vector addition and scalar multiplication, let us 

make a few observations. So observe that when we talked about the affine set in this case 

where v was our 2, 0 and u was this, what we obtained is an entire set. 

If instead of 2, 0 if we had started off with, say V is equal to 3, 1 my claim is that we would 

have ended up with the same affine subset. It is for you to go back and check that there is 

nothing unique about the vector with which we have translated it. It can happen that two 

different vectors give us the same affine subset. Our next question is to answer when can that 

happen? So let us answer that question through a proposition. 

The next proposition answers the question of when does two different affine subsets give us 

the same element? Or when are two different affine subsets the same? 
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Proposition. Again the setup is as above. So let me just write it down. Let v be a vector space 

and u be a subspace of v. Then, for V1, V2 in capital V, let us consider v affine subsets of v 

corresponding to u obtained with v1 and v2. And let us ask when are they the same? V1 plus 

u is equal to V2 plus u if and only if it is a necessary and sufficient condition as you can see, 

V1 minus V2 belongs to capital V, if V1 minus V2 belongs to capital U, sorry. 

If V1 minus V2 belongs to capital U, then the corresponding affine subset are the same. Let 

us have a look at the proof, one side is easy, so let us both sides are easy let us solve the 

easier side maybe this is not easier said. Anyway, if V1 minus V2 is in capital U, let us 

assume that V1 minus V2 is in capital U. What does this imply? This implies that V1 minus 

V2 is equal to some small u which is in capital U. After all it is in u means that it is some 

vector u in capital U. This implies that V1 is equal to V2 plus u.  
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Now, consider an element in V1 plus capital U it will be something like V1 plus U1 only, say 

V1 plus U1. Then, V1 plus U1 as you can note, V1 is v2 plus u. So V1 plus U1 is equal to V2 

plus u plus u1 but what is this? This is equal to V2 plus u2 plus, there is no u2. It was v2 plus 

u.  

So that is here (())(11:27) again. It is u, u plus u1 but u plus u1 is an element of capital U. 

This hence belongs to V2 plus capital U. So essentially what we have shown is that, V1 plus 

capital U is contained in V2 plus capital U but this is a symmetric argument instead of 

starting with V2 and V1, we could have done the other way, and similarly, it can be shown 

that V2 plus u is contained in V1 plus U. 



That implies, V1 plus U is equal to v2 plus U. So if v1 minus v2 is an element of the 

subspace U, then the corresponding affine subsets, it is also called as cosets, the 

corresponding affine subsets are the same. 
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Let us now consider the forward direction. Suppose, the assumption is that V1 plus u is the 

same as V2 plus u. Suppose V1 plus u is equal to V2 plus u. This implies that V1 plus any 

element, say U1 is equal. 

So, let V1 plus u1 plus be in V1 plus capital U, take some arbitrary element. That is equal to 

V2 plus u. The affine set V1 plus U is equal to V2 plus u implies that there is some U2, this 

implies there exists u2 in capital U such that, V1 plus U1 is equal to V2 plus u2. We are 

almost done because this implies V1 minus V2 is equal to u2 minus u1 but both u2 and u1 

belong to capital U and hence, u2 minus u1 belongs to capital U and that is precisely what we 

had said. 

But so we have essentially proved that two affine subsets v1 plus capital U and v2 plus 

capital U are the same if and only if V1 minus V2 is an element of capital U. At this juncture 

let me give u an exercise which tells you something even stronger. It says that, this exercise 

tells us that if two affine subsets intersect even in one point, suppose the intersection is non 

empty, then they should necessarily be the same. 

So, if V1 plus u intersected with V2 plus u is not empty, suppose, there is even one element 

in the intersection, then V1 plus u is equal to V2 plus u. So the ideas are quite similar to the 

ideas used in the proposition we just proved. This can be established in a similar manner. So 



we have done this paid work to now define a vector addition and a scalar multiplication on v 

mod u. 
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So, let us now define a vector addition on v mod u. So let V1 plus capital U and V2 plus 

capital U be elements in v mod u. Let us define V1 plus u plus, this is the plus we are 

defining. And V2 plus u, remember whatever is there inside the brackets, they are elements in 

v mod u. So V1 plus capital U as a symbol is something which we have already defined, an 

affine subset. 

Similarly, V2 plus capital U in the bracket is a symbol which actually defines an affine subset 

corresponding to u and V2. We are now defining the sum, this sum of these two vectors. We 

will define the sum of V1 plus u and V2 plus u to be V1 plus V2 which is a vector capital V 

and the affine subset corresponding to u and V1 plus U2. So this is our definition of the 

vector addition. 

Now, if you think about it carefully, this definition has a serious problem because we already 

noted that, remember in R2 when we considered the subspace U, which was x is equal to y or 

set of all x, x we already noted that for v equal to 2, 0 and v equal to 3, 1 both the affine 

subsets were the same. So when we are talking about the addition of two such elements, what 

is the choice of the vector involved? So let me repeat what I just said. The vector V1 that we 

have here is not necessarily picked in a unique manner. 

We already saw that if V1 minus V, if two vectors difference is in u, then the corresponding 

affine subsets are the same. So there could be many, many, many V1s which will give you 



the same affine subsets. Similarly, there could be many, many, many V2s which could give 

the same affine subset here. So there is a very serious problem with respect to this addition in 

terms of the choice of v1 and v2 involved. 

If we V1 and V2 changes, what if the right hand side here depends on that choice. So we 

have just now proved a proposition which essentially tells us that this choice does not matter. 
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Before we get into that, let me also define what the scalar multiplication on v mod u is. Scalar 

multiplication on v mod u. Observe that V1 plus u and V2 plus u by the above definition if at 

all the definition makes sense, if you add it, it is giving us back an implement in v mod u and 

therefore, addition so v mod u is closed under that addition, if at all it makes sense. But we 

will come to that in a minute. 

Before that, let us define or c in R and v plus capital U in capital V mod u, c times small v 

plus capital U, this is defined to be CV plus U. Again the same problem arises, the choice of 

V is a problem here. So let us first get that out of our concern. Suppose, V1 plus u is equal to 

V1 prime plus u. And V2 plus u is equal to V2 prime plus u. So in other words, V1 to V1 

prime give us the same affine subset, and V2 and V2 prime give the same affine subset. 

Then we could define addition in two different ways. Then V1 plus u plus V2 plus u, this is 

equal to v1 plus v2 plus u, but this is also the same as V1 prime plus u plus V2 prime plus u,  

because both are after all the same affine subsets and this is equal to V1 prime plus V2 prime 

plus u. The question is, are these two objects equal? If they are equal, then we have shown 

that the vector addition we have defined does not depend on the choice of V1 and V2. But 

what does it mean to say that these two are equal? 

We have shown a proposition earlier, that two vectors give us the same affine subset if its 

difference belongs to u. So consider V1 plus V2 minus v1 prime plus V2 prime, this is equal 

to V1 minus V1 prime plus V2 minus V2 prime, but what was our assumption to begin with? 

Our assumption was that V1 plus u and V1 prime plus u are the same affine subsets, hence 



this belongs to u. Similarly, V2 plus V2 prime also belongs to u, which implies that this is 

sum of two vectors in u which is having the neck in U. 

Again by using the preposition if the difference of two vectors belongs to u, then the affine 

subset corresponding to the two vectors will be the same. 
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Therefore V1 plus V2 plus u is equal to V1 prime plus V2 prime plus U. Therefore, our 

vector addition is well defined, it makes sense to define it like this. Well, it is a vector 

addition and a similar argument, let me just write it and leave it as an exercise for you. A 

similar argument will tell us that scalar multiplication is well defined that it does not depend 

on the choice of the vector small v with respect to which they affine subset is being 

described. 



I would like to leave again as an exercise for you to check that v mod u is a vector space 

corresponding to the vector addition and the scalar multiplication which we have just defined. 

Again, I should stress here that it is a check which you should certainly do. It might be a 

routine check, but it is important to do all these routine checks. So, exercise is to prove that 

check that v mod u is a vector space with respect to the vector addition and the scalar 

multiplication just defined. 
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Again, like in the case of product spaces, I would like to draw your attention to what would 

be the identity here and what would be the inverse. So the identity as is to be expected will be 

corresponding to the 0 vector, the identity of v mod u is given by 0 plus u, where 0 is the 

identity of V. Well, that is quite straightforward. 

If you look at small v plus capital U and add it to 0 plus u, by the very definition it is going to 

be small v plus 0 plus u, which is v plus u. Therefore, this is the additive identity. How about 

the inverse? The inverse, again you should check this out, inverse corresponding to v plus u is 

given by minus of v plus u. v plus minus v will give you 0 and hence 0 plus u is the additive 

identity of v mod u. So yes, this makes sense. 

So why are we considering v mod u? Why are we giving it vector space structure? Of course, 

the vector space structure which we defined, directly is obtained by using the vector space 

structure of v, the vector addition and the scalar multiplication as you can see, which was 

defined was using the vector space addition and scalar multiplication operation, but why are 

we doing all this? 



The reason is that in the study of linear transformations, quotient spaces come naturally. 

Before that, let me define a map for you. 
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Let us define the quotient map. In some sense it is going from v to the quotient of v by u. 

Well, it is not that way but maybe the name was generated that way. So let us define the 

quotient map by from v to v mod u by pi of v is equal to v plus capital U. Again, there is a 

question of whether, no it is not again, there is a question of whether pi is a linear map, pi is 

certainly a map onto the v mod u if you carefully observe, pi is a subjective map and it is an 

easy check. 

Maybe I will just check it for you. Pi of V1 plus V2 is equal to V1 plus V2 plus  capital U 

which by our definition is V1 plus u plus V2 plus u which is equal to pi of V1 plus pi of V2. 

Similarly, you can check that by pi of scalar times vector small v is c times, is scalar times 

the vector pi of v. So pi is actually a linear map. 
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Similarly, check that pi of CV is equal to c times by pi. Hence, pi is a linear map. So the first 

question is, what are the implications of the definitions that we have given on v mod u in 

terms of v? So just like in the case of say product vector spaces we had that dimension of V1 

plus V2 up to Vn was dimension of v1 plus dimension of V2 up to dimension of Vn. Can we 

say something similar here? The answer is, yes. 

So that is captured in this proposition. Let V be a finite dimensional vector space. So as you 

can observe, till now, whatever we did, did not demand that V be a finite dimensional vector 

space. We need to demand a finite dimensionality here in order to talk about dimension 

which is interesting (())(28:46) finite. So let V be a finite dimensional vector space and U be 

a subspace, then dimension of v mod u is equal to dimension of v minus dimension of u. 

Let us give a quick proof of this proposition and as one would expect, there is the dimension 

theorem involved in the proof of this. So let us see, dimension theorem applied to what. We 

just noted that the map pi, quotient map pi from v to v mod u is a linear map. We just proved 

it. We proved that it is a linear map from v on to v mod u. We did not check that it is 

subjective but checked that R of pi is equal to v mod u where R of pi is the range of pi. 

So subjective map, so the range will be the entire space. So R of pi is v mod u. What does our 

dimension theorem tell us? 
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By dimension theorem, dimension of v mod u is equal to dimension of V minus dimension of 

v null space of pi. So we are almost done. We have that dimension of v mod u is equal to 

dimension of v minus the null space of, dimension of the null space of pi. And our goal is to 

show that dimension of v mod u is dimension of v minus dimension of u. So one should 

expect that null space of pi and u have something to do with each other. 

In fact, it does claim null space of pi is exactly equal to u. So let us just have a look at the 

proof of this. 
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Consider, v be an element of null space of pi. What does that mean? This implies that pi of V 

which is equal to v plus u belongs to or is equal to the 0 vector. This is equal to the 0 vector 

plus u, but what does that mean? This implies that v belong to u which implies null space 

because v minus 0 belongs to u to be more precise and v minus 0 is just v. This implies that 

null space of pi is contained in u. 

Now if let u be an element in capital U, then u minus 0 which is equal to u belongs to u, 

which implies u plus capital U is equal to 0 plus capital U, which implies u belongs to, which 

is equal to u plus capital U is equal to 0 plus capital U which implies that u belongs to null 

space. And hence, we are done. So we have essentially proved that the dimension of v mod u 

is equal to dimension of V minus V dimension of the null space vector which is u. Now, let 

us see how this setup can be used to study linear transformations more effectively. 

(Refer Slide Time 32:53) 

 



 

So let us start with a linear transformation. So let T from say V to W be a linear 

transformation and there is vector subspace of V which is very naturally associated to T 

which is basically the null space of T. So consider u to be equal to the null space of T, then 

define, now define T tilde to be a map from V mod u to w. First thing to check is that, leave it 

as an exercise for you to check that, oh what is, I did not define T tilde. T tilde of say small v 

plus capital U, the guess should be correct which is T. 

Just send the corresponding affine subset to TV. Yes, that is a question of before we check 

anything more, let us check that this definition makes sense again. Like in the case when we 

were defining a traditional scalar multiplication, we were worried about whether the choice 

made any difference, whether it would make sense to define it like this at all. Here also the 

same question is relevant and the answer is, it does not matter. 

So suppose, let us check that out. Suppose V1 plus u is equal to V2 plus u, then T of V1 plus 

U plus u should be the same as T of V2 plus u because they are the same vectors in v mod u. 

So T tilde rather, so T tilde of V1 plus u should be equal to T tilde of v2 plus u. What is T 

tilde of V1 plus u? That is equal to T of V1, but what is the meaning of V1 plus u being equal 

to V2 plus u? By proposition proved earlier this is if and only if v1 minus v2 belongs to u.  

Recall what u is, U is the null space of T, which implies T, put a plus, this would be minus. T 

or V1 minus V2 is the 0 vector. It is in the space of u, null space of T. And that means TV1 is 

equal to TV2. This TV1 is equal to TV2. That precisely is T tilde of V2 plus u. Therefore, to 

define T tilde in this manner based on a choice does not affect the definition. It is still well 

defined. 



This implies that T tilde is well defined. It makes sense to define it like this. 
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Now, it is a check for you to see that T tilde is a linear transformation. Not just that T tilde is 

a linear transformation, and so let me put it as an exercise for you. Also check that the range 

of T is equal to the range of T tilde. So why are we going to such lengths to discuss T tilde? 

The reason is the following proposition. Proposition. T tilde is an isomorphism from v mod u 

on to R of T. So T tilde is a linear map which is clearly let me give a proof, clearly T tilde is a 

linear map by our exercise. 

So clearly is all based on whether you have solved the exercise or not. Assuming that you 

have done the exercise by now, T tilde is a linear map from v mod u on to R of T tilde. And 



again the above exercise tells us that R of tilde is the same as R of T. So this gives v mod 

which is equal to R of T. 

To check that this is an isomorphism on to R of T, it is enough to show that this linear map is 

both injective and subjective onto R of T. You have already seen that it is subjective onto R 

of T. It is enough to now check that T tilde is injective. So claim is that T tilde is injective. To 

show that T tilde is injective, let me invoke a result we have proved earlier to show that the 

null space of T tilde is, it has the 0 space. So what is the null space of T tilde? 

So suppose, T tilde of v plus u is equal to 0. This implies that TV by the very definition, T 

tilde of v plus u is TV. TV is equal to 0. Remember this 0 is in W. But that implies that v 

belongs to the null space of T which is equal to u, which implies v plus u is equal to 0 plus u 

which is the 0 vector of v mod u, which implies space of T tilde is the singleton set 0 plus u, 

which is 0 element of v mod u and hence T tilde is injective. 

So we are in good shape now. If we start off with a linear transformation from a finite 

dimensional, yes, maybe we do not need to even talk about, let me be a bit more careful. 

Finite dimensionality is needed only in the proof of this theorem where we are using 

dimension theorem. In the proof of this proposition we do not need any finite dimensionality. 

If you carefully observe the entire proof goes through for any vector space v and any linear 

transformation T from v to w. So we have proved that if T is a linear map from v to w, there 

is the subspace, null space of T which is called u and then v mod u is isomorphic to the range 

of T. So if T is a subjective map from v to w, then v mod null space of T is isomorphic to w. 

That is what we have proved. So next, we will be discussing dual spaces in the next video. 

 

 


