Linear Algebra
Professor Pranav Haridas
Kerala School of Mathematics, Kozhikode
Lecture 1.2
Examples of Vector Spaces

Let us now give many examples to get a grasp of this concept.

(Refer Slide Time 0:29)

Pm?ml-jﬁf Civwn wdor a b wnd WV, Hun
@+b)f0' = avtbv (Maﬂ»'p&éﬁﬁm is Diness)

E,(w&E[(;r [Rh ‘= (20 ), 20) : ZeR
! : J 4
('r..,u,,...,acn) t Yoy o) = (% )Tt Yageee ) Totn).

Fo’] 3 C,(‘(.;,..,-J-zn) 1= [cxle'x,_,...) cz,“}_éﬂ?,h

i

Examples: The first example is.... we have already seen a couple of examples. In fact, most of
these properties are obtained by noting what are the properties in say R"2 or R”3 which are
special and which we would like to generalize. Right? So, let me now just give you the more
general Rn. Rn is just the Cartesian product of R with itself n times. It is x_1, X 2 up to x_n
where each of the xi are real numbers. So, this is an ordered tuple. Again (2, 3, 4) is not the
same as (4, 3, 2). The order matters. And what is the addition and the scalar multiplication? As
is to be expected, suppose X _1,Xx 2uptox nisanelementinRnandy 1,y 2 uptosayynis
an element in Rn and we define. So, when | put a colon followed by an equal, it means that we
are defining something. Yeah, this case we are defining the vector addition. What is this? This
is X_1+y 1, x_2+y 2 so on up to x_n+yn. Right? So for a scalar or Real numbers c, ¢ times
(x_1,....,x_n), this is being defined -- again I will put a colon followed by an equal to -- this is
(c x_1,cx_2,..., cx_n). So that the vector addition of two elements in Rn is giving back an
element in Rn is quite straightforward. It is clear that this is an element in Rn. Right? This is

also an element in Rn, so Rn is certainly closed under these two operations.
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We are however left with the properties | to V111 that are to be checked to say that Rn is indeed

a vector space. Let me not go over all the properties. Let me just focus on maybe one or two
properties... Maybe let us check property 8.
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Is the multiplication linear? What do we have to check? We have to check that a+b times x_1
up to x_n is this equal to..... This is what we have to check, (that) this is equal to
a(x_1,...x_n)+b(x_1,...x_n). Right? This is exactly what we would like to check. But what is
(atb) times.... Let us start with the left hand side. What is (a+b) (x_1,...,x_n)? This is
component wise multiplication. Right? Scalar multiplication by definition is ((a+b)
x_1,...,(a+b) x_n). But each of the components, if you observe a, b and x_1, all real numbers
and we are just looking at the distributivity property of the Real numbers. Right? So, this is
equal to (ax_1+b x_1,...,ax_n+b x_n). But if you observe carefully by the definition of vector
addition, this is exactly (a x_1,...,a x_n)+(b x_1,...,b x_n). And again, now we will use the
definition of what the scalar multiplication is. If you look at the scalar multiplication of a with
the vector (x_1, x_2,...,x_n), we get back (ax_1, ax_2,...,ax_n). And similarly, if you look at
the scalar multiplication of b with (x_1, x_2,...,x_n), you get back (b x_1, b x_2,...,b x_n).
And that is precisely what we were trying to prove. Right? This is exactly equal to what we
have written here. Okay, so we have established the question mark. So claim..... We have made

a claim and we have given a proof.

Now, this is just the property VIII that we have checked. There are seven other properties and
the proof of each of the seven properties or the seven properties getting satisfied is very similar
to how we would have done it in say in R*2 or R"3. So let me leave that as the first exercise
for you and | would strongly suggest that you really sit down and write each of these steps.

Check that property I, Il, 111 up to VIII are indeed getting satisfied. Okay?
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A second example, example 2. Example 2 is the scalars, the field of scalars. The scalars, F or
R, let me call it R, is a vector space. Well, I think we just have to go up a bit and recall some

of the properties which we were capturing.
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If you observe carefully, (i), (ii), (iii) to (vi) here satisfy most of the properties..... | did not
even mention what are the vector addition and scalar multiplication here. Let me go in an

organized manner.
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So, R is a vector space with the vector addition as the usual addition -- addition of real numbers.
And the scalar multiplication..... again what is expected of a scalar multiplication here? A
scalar and an element of the set V should give you back an element of this set V. Here our set
V is also R. So you get a scalar and a real number. We can now just talk about normal
multiplication. Right? Scalar multiplication is the multiplication of real numbers. | was
scrolling up, let me not do that again. The scrolling up part was to show that the various
properties..... the fact that R is closed under addition and multiplication is known to us. And
the various properties, many of the properties have already been checked above when we
described what scalars are and what properties of scalars we are interested in. This is a boring

exercise. This is a boring example but nevertheless, it is an extremely important example.

A similar, not very interesting but very important example, is what is called as the zero vector
space. Let V be the set which has just the 0 element. What are the operations? Vector addition?
You do not have much choice in talking about vector addition. There is only one element in
the set V. So, we have to talk about what is the sum of 0 with itself and we have not much of a
choice again. There is only one element. It has to be 0 itself. And scalar multiplication, you
take any scalar ¢ and multiply it by the only element in V, it has to certainly give you back the
only element. Check that all the properties are satisfied. This is clearly.... the vector addition
and scalar multiplication is being written in such a manner to ensure that V is closed under

these operations.
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The properties | to VIII are trivially satisfied. This vector space is called as the zero vector
space. Okay, so till now we have only seen examples which either are familiar or are not very
interesting.
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So let us know consider an example.... this is example four. Let us consider an example which
is a bit more exciting. You might be familiar with the set of Complex Numbers. Let C, let me
denote that set by C. So our vector space V is what is being denoted here by C. This is the set
all a+ib, where a and b are real numbers. If you have seen some operations in complex numbers,
we have defined -- we have not defined in this course but you might have seen -- that if you
take say 2+3i, and if you take say 4+6i, and if you add it, you will get..... 2+3i and 4+6i, you
will get 6+9i, right? We will do it component wise in some sense. (a+id)+(c+id), this is being

defined.... Again, | am putting a colon.... which is equal to (a+c)+i (b+d).

Again, this might look like a bit of manipulation of symbols. But it is not like exactly
manipulation of symbols. let me just show you what is happening here. The ones which I am
circling in blue, they are just notations. Right? The set of all a+ib, we could have as well
written it as (a, b). Right? This is just a notation. The one | am circling in green is what is being
defined. That is the addition that is being defined right now, a+ib, which is a notation and c+id
which is a notation for complex numbers that is being added here by what is described in the
right. In the right let me use another colour now. The yellow is being used, maybe yellow is a
bad choice.... let me use blue and let me circle the two additions that are written to the right

hand side of the equation. Those are addition of scalars, those are addition of Real Numbers.

Remember that a and b, and ¢ and d all are Real Numbers. So, a+c is a Real Number, b+d is a
Real Number. So we get back some real numbers. Oh, there are many pluses which are
featuring in this equation and different pluses have different meanings. It is very important to
keep in mind that when we are doing some abuse of the notation, the context should make it

clear and that is something which we should familiarize (ourselves with). Okay. Enough is said



about the use of notations here. We have defined addition. So this is our vector addition, okay,
that we would like to consider. Observe that if you are taking two Complex Numbers and

adding it, we are getting back a Complex Number.

Now for a scalar a or a real number a in..... Let me note as R.... so F is also used generally for
the field of scalars. But in our case, in this course, most of our examples are cases when our
field of scalars is Real Number. So, I will use interchangeably between R and F. In fact, I will
mostly use R. And c+id be an element of C. Then define this scalar multiplication as ac+i ad.
So, scalar multiplication is also the most straightforward definition that we can think of. Again
notice that C is closed under this operation of scalar multiplication. And again | leave it as an
exercise for you to check that all the properties I to VIII are satisfied. Let me leave it as an

exercise. Properties | to VIII are satisfied by the vector addition and scalar multiplication.

If you have seen some operations..... or if you have worked with Complex Numbers, you would
have seen that we can also talk about multiplication of two Complex Numbers, and we will get
back another Complex Number. For example, (a+ib)(c+id) is (ac-bd)+i(ad+bc). But to talk
about a vector space, again, let me reiterate, given two vectors v1 and v2, we do not talk about
the product of v1 and v2. That operation is not being defined in a vector space. The only

operation that we are defining is a scalar multiplied to a vector.

So even though it is possible to describe the multiplication of two Complex Numbers, for the
purpose of studying the Complex Numbers -- the set of Complex Numbers as a vector space -
- we will restrict our attention only to what is the scalar multiple of a Complex Number by
scalar. It is a good observation to keep in mind that this is just the special case of the complex
multiplication, multiplication of complex numbers that we might be already familiar with.
Nevertheless, | spent a couple of minutes exclusively to push forward the notion that, given
two vectors, given two elements v1 and v2 in V, we are not talking about the product of the

elements v1 and v2.
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I am using the word vectors. Let me.... Before going into the next example, let me just give a
definition. An element of a vector space is sometimes referred to as a vector. An element of a
vector space is referred to as a vector. of a vector space V is referred to as the vector in V. So
when we say something is a vector in V, we just mean that it is an element in V. Okay, let us

look at the next example, example 5.
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I leave it as an exercise for you to check that all the properties | to VIII are satisfied and |

strongly recommend that you really sit and write down and check each of these properties.
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Okay, what is the next example? consider P_n(R). Let V be equal to script P_n(R). What is
this? This is the set of all polynomials of degree less than or equal to n. So, when | am asking
you to check for all the properties, you are expected to come up with the candidate for what is
the additive identity and what will be the candidate for the additive inverse of a given vector.
Not just taking the remaining properties.... you will also have to talk about what these are the
additive identity and the inverses. So, let us now look at the example 5, which is polynomials

of degree less than or equal to say n, where n is a positive integer.

For example, if you look at P_2(R). (It) has elements of the type... like.... say x"2+1 or 2x+3.
What else? Well, the constant 4 is a polynomial that is an element in P_2(R). All polynomials
ax"2+bx+c, where a, b, c are in the field of scalars.... are Real Numbers. Right? So, P_2(R)

will be the collection of all polynomials (of degree) less than or equal to 2.
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Now we are familiar with the notion of addition of polynomials. So given two polynomials, we
know how to add them. For example, if | say x*2+4x+3, and | am to add it to minus of 4x+2.
We know that by basic algebra... we know that this is going to be x"2+5. Right? So the addition
is exactly generalizing this or putting it in a more formal framework. This exact vector addition
which we are familiar with. So, a_0+a_1 x+..... Let me just write the definition of vector
addition. Maybe 1 should leave that as an exercise as well. The next one we will. a 0+a_1

x+....+a_n X n, this is the general expression for element here. Right?

Some polynomial of degree less than or equal to n can be represented as a 0+a_1 x+....+a n
x™n, wherea _0,a_1, a 2, ....a_nareall Real Numbers. This is being added to another element
say b O+b 1 x+...+bn x™n. And what do we get? we get this as
(a_0+b_0)+(a_1+b_1)x+...+(a_n+b_n) x*n. When we are writing it like this, the doubt that
can crop up is whether we are considering the cases like in the example here. The polynomial
to the right minus 4x+2. That does not have degree two. Right? That is a degree one polynomial.
But that is okay because we have allowed b_1, b_0 (to be 0). So where ai and bj all are in the
field of scalars. Right? So in particular, ai could be 0. All ai’s could be 0, a few a i could be 0,
a n could be 0 and so on, and still we can talk about the sum here. Okay, how about scalar
multiplication? Scalar multiplication also... what if we take x*2+4x+3 and multiply it by say
2. We will get 2x"2+8x+6, right? So scalar multiplication is also doing exactly the same thing
that we expect. For a scalar ¢, and p(x), a polynomial which is equal to say a O+a_1 x+a_n

x™n, we find c times (this polynomial). So remember that, and let me put a colon here because



we are defining it, we are defining the scalar multiplication here. This is being defined to be ¢

a_0+...+ca_nx”n.
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Okay, so again, | leave it as an exercise for you to check that all the properties listed in the
definition of a vector space are satisfied. Okay, let us make it a bit more interesting. So we
were looking at polynomials of degree less than or equal to n. Let us not put any restrictions.
Let us consider all polynomials. So let V = P(R) be the set of all polynomials in the
indeterminate x. Yeah, the previous one also was something like this. Well, let me just put it in
bracket.... with coefficients in Real Numbers. The previous one also was the set of all
polynomials of degree less than or equal to n with coefficients in R. So how do we define
addition? We have already given you a glimpse of how we define the addition. | will not write
it down explicitly. We can add any two polynomials. We can also talk about the multiplication
of a scalar to a polynomial. We get back polynomials. Right? And with the usual..... let me
just write it like this..... with the usual addition and scalar multiplication P(R) is a vector space.

Let me give numbers here..... this was example six.
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Okay, example seven. This is an example which is not similar to what we have seen till now.
So let V = C(R) where C(R) is the collection of all functions f from R to itself such that f is
continuous. So if you have seen the notion of continuous functions...... Let us look at the set
of all continuous functions from R to itself. Okay. We define the vector addition here. Let us
define, for f,g in C(R), f+g. We need to describe.... f+g should be some function from R to R.
Right? So we will define (f+g)(x) to be f(x)+g(x). Now notice that this makes f+g into a
function from R to R. And some more background in Real Analysis will tell us that whatever
we have defined turns out to be continuous as well. So, the closedness is something which |

will not verify now and leave it for you to verify later after doing a course in Real Analysis.
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And the scalar multiplication.... so this is the vector addition we have just defined. Scalar
multiplication.... Again cf. This is as of now just a notation and let me say how this is a function
of R. This is defined as c times.... the scalars ¢ times.... Now f(x) is a function... f is a function
from R to R. f(x) is hence a real number. So (cf)(x) is another Real Number. Define cf to be
this particular function. Again, | will leave it as.... it is not an exercise. Let me leave it right
now to check that multiplication of a scalar by a continuous function gives you back a
continuous function. That is something which I will rest right now and let you verify later when
you do a course on Real Analysis. So, the fact that C(R) is closed under vector addition and
scalar multiplication will be taken for granted right now. Let me just write that down, that C(R)

is closed under vector addition and scalar multiplication.
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An exercise is to check that properties | to VIII are satisfied. An interesting question to ask
might be, what will be the zero-vector of C(R)? I will let you think about it. Let me give you
more examples. So example nine, or not..... Example eight. Let V be equal to what is usually
denoted as F(R). You might be wondering why | am giving strange notations. These are all
classical notations and F(R) is used to denote the set of all functions from R to R. The set of all
functions from R to R..... And define vector addition and scalar multiplication as in example
seven; point wise. It is good to again sit down and check.... already most of the things have
been checked if you have done the exercise, previous exercise.... if you do the previous
exercise, this will also follow, that F(R) is a vector space. It is an exercise to be checked. The
fact that vector addition and scalar multiplication will give you back an element in F(R) is quite
straightforward. It is the properties which you have to check but I think the previous exercise
would have already done.... you would have done most of the work. So, with that, F(R) is also

a vector space.

We started off with just very basic examples like R*2, R"3, R"n and now we are looking at
spaces which has functions in it. And we are saying that these are vector spaces. They are
similar in some sense. At least some of the properties of the addition and scalar multiplication

are the same as the properties of the addition and scalar multiplication in R”n.

I will maybe give a couple of examples more. They are important examples and hence..... Let
R7infinity be the set of all infinite sequences. An element in R7infinity will be something like



say (1,2,5,6,1,4,...... ) an infinite sequence. So formally R infinity is just the set (x_1, x_2
....)such that x_i belongs to R.
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And how do we define vector addition? Again, point wise; just like how we define it in R™n,
define addition and scalar multiplication in R infinity as well and check that it is a vector space.
So I will just write it as R~infinity is a vector space with vector addition and scalar
multiplication defined as in.... similar to.... define similar to the ones in R"n, coordinatewise.
Okay, Let me give you just one more example finally before going ahead. So example ten is
again the classical notation is M_{mxn}(R). This is an example which you will be quite
familiar with. Where M_{mxn}(R) is the set of all m cross n matrices.
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What isthe set of alla_11,a 22 uptoa nl..a mn..... So M_{mxn}(R) formally is the set
of all elements of this type, a 11, a m1 up to a_mn where a_ij are real numbers. So, what
would be the vector addition and scalar multiplication? Again vector addition and scalar
multiplication is coordinate wise. It is defined coordinate wise. | will not write it down. It is
just going to make it cumbersome and something which you can very easily do. So let me leave
it as an exercise for you to write down formally what the vector addition and the scalar
multiplication is. And again | leave it as an exercise for you to check at all m cross n matrices

over R is a vector space with these operations.

So, yes, we have now defined what a vector space is and we have seen many many many
examples of vector spaces. There are actually plenty of examples, infinitely many examples of
vector spaces. But let us not go into it anymore. We will be keeping on visiting more examples
during the course. Many new vector spaces will be defined from existing vector spaces and so
on. Okay, so now that we have spent so much time to talk about examples, let us also discuss

a few cases which will be non-examples. Let me just write it down Non-examples.

(Refer Slide Time 36:26)

x |l Ve i?dejmm'\als‘%&ﬁva -‘-'f)}'

(%"+Q) + (-2'+5) =7

" fR’t & %al\ Paﬁll'ive. th Wbo.le

One example would be..... consider all polynomials of degree equal to n. So, let V be equal to
the set of all polynomials of degree equal to n. Well, I will give you your favourite pick of
which property is getting violated. In fact, even before we enter into properties, notice that V
is not closed under addition, for example. If you take a polynomial, say x*n+2 and if you add
it to -x*n+5, what we end up with is 7. Right? If n is say 2, if you are looking at P_2(R),



polynomials of degree equal to two, 7 is certainly not a polynomial of degree two. So this set

is not even closed under vector addition. So this is certainly not a vector space.

The first requirement before we start looking at the properties is that it has to be closed. If you
take two elements in the vector space, in the set, and if you add it, you should get back an
element in the set itself. It is not getting satisfied here. What could be another example? Yes,
another example is.... consider R"+. R+ is the set of all positive real numbers. So if you take
R.
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Here, the addition and the scalar multiplication is defined, like we define it in the vector space
R. So if you take two positive real numbers, if you add it, you get back a positive real number.
So, R plus is closed under addition. And if you do the scalar multiplication, now the problem
comes, is it closed under scalar multiplication? Answer is no. It is not closed under scalar
multiplication. If you take say 2, and if you look at the scalar multiple of -1 to 2, then scalar
multiplication should be -2, which is not in R*+. This is not closed under scalar multiplication.
So, with vector addition and scalar multiplication as in R, this is not closed under scalar

multiplication. It will not be a vector space. Okay.

We have discussed quite a few examples now. We have seen a couple of non-examples. Let us
see what the impact of the properties are on the vector addition operation and the scalar
multiplication operation. So, maybe let me give a proposition. This is the first proposition of

this course.
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Let V be a vector space and suppose u, v, w are vectors. Suppose they are elements in the vector
space V. Then u+w = v+w, then if.... then if does not sound good. If u+w = v+w, then u = v.
What does this proposition tell us? The proposition tells us that if you have a vector w which
iS....... the vector basically cancels, that is what it says. Right? You can cancel out vector w
which is featuring in the left hand side and the right hand side and we get u = v. Let us give a
quick proof of this. This is the first proposition of this course. So let us spend some time to talk
about how a proof can be given rigorously. Okay so, what is it that we know? We know that V
IS a vector space and given any vector space, we have that every vector has its additive inverse
right. So, let -w denote the additive inverse of w, the element w has an additive inverse let us
denote it by -w. Then u+w is equal to v+w implies, by adding the vector -w both sides nothing

changes. u+w+(-w) = v+w+(-w). Right? But our vector addition is associative.
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This implies: this is equal to u + ..... the above u+w+(-w) is the same as u+(w+(-w)). Which
of the two vectors are added first does not matter. Similarly here, v+(w+(-w)). But minus w is
the additive inverse of w. So if you add w and -w, you get u+0, which is the same as v+0.
Notice that when you write the 0 here it should not be confused with the scalar zero, the real
number 0. This is an element in the vector space V and it is clear from the context what it is. u
is a vector in V, and therefore you cannot make sense of u + the real number 0. So here when
we write u+0, it is clear from the context that O is the zero vector of V. But what is u+0? It is
just u and this is just v, and hence we have proved the result.

Let us just.... for the sake of completion, even though 1 said it very orally, what is this
implication coming from? Since addition.... vector addition is associative.... important to note
all the reasons.... Why is this happening? Since -w is the additive inverse of w. You should go
back and check which property of the definition of the vector space we have used and this since

0 is the additive identity. Okay, this symbol will generally denote that we have completed the
proof.
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I will give a few exercises here before concluding this session. Prove the following: 1) O times
any vector v is equal to 0. This is good exercise for you. with the abuse of notation that we are
familiar we are getting familiar with. So if you observe carefully, the left hand side is the scalar
0 multiplied to be the scalar multiplication of the real number 0 to v. So this is the set v, just
note that this is the real number 0 and this is the 0 vector in v. To proof the following in any
given vector space v, so this is true for all v in capital V. Okay what next, proof that, if you
look at minus 1 times v this is give you minus v. So, for all v in capital V, what is minus v?

where minus v is the additive inverse of v, okay.

So we have just written the additive inverse. So, that is not something acceptable yet because
what first is the inverse to be unique could have been an additive investment would have been
more appropriate here. So to do that, let us do one thing, before we go into other examples or
other exercises let us proof the following, the additive identity and additive inverse of any
vector of any vector is unique. So, first we will show that the additive identity is unique and

then we will show the next part okay.
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So suppose there are two different so suppose 0 and 0 prime are 2 identities additive identities.
What is the property of an additive identity? If you add any vector to that it should give back
the vector itself, so 0 in particular is equal to 0 plus O prime, right? But what is 00? This is
because going by the assumption that both 0 and O prime are additive identity. So in particular,
0 is also an additive identity, so if you treat our O prime as our vector v, and if you add it to 0,
because 0 is an additive identity, you should get back v right, so this is equal to O prime and
why is this equality coming up? So this equality is because of this, this equality is because since
0 is the additive identity.

So it may not give a proof of the inverse being unique, I leave it as an exercise for you to check
that inverse is unique it is more or less similar. Check that the inverse that the inverse is not yet
right. That is precisely what we are trying to do inverse of any element, v any vector v in capital

V is unique alright let us stop here.



