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Lecture - 4.1 

Problem session  

So, this video is problem session, which is based on the material that was covered in the first two 

weeks of this course. The main intention of the problems session is to supplement the problems 

that have already been given in your assignments. So, I hope that you have given a considerable 

amount of thought to the problems that were given in your assignments. So, let us now look at a 

few more problems.  
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So, Problem 1. So, the problem 1 is as follows. Let V be the set of all elements x, y such that x, 

comma y are in R. Basically it is the Cartesian product of R with itself. Define vector addition in 

V component wise and scalar multiplication as follows. What is the scalar multiplication? The 

scalar multiplication is a times x, comma y is equal to x, comma 0 for all x, comma y in capital V 

and a in the field of scalars. So, the problem is to check is V a vector space with these operations. 

So, notice that we are looking at the same set V which is R2, the only thing is we are tweaking 

the vector addition actually vector addition is the same. The scalar multiplication has been 

tweaked to the new one, which is underlined in green. And our task here in this problem is to 

check whether V is a vector space in these operations, alright. So, what do we need to do in order 

to establish this or solve this problem?  
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So, let us look at the solution. The first thing to notice is first thing to check is whether V is 

closed under vector addition and scalar multiplication. So, the vector addition, so recall the 

vector addition, which is component wise is given by x1, y1 plus x2, y2 is equal to x1 plus x2 

component wise, y1 plus y2 which is an element in capital V for all x1, y1 and x2, y2 in capital 

V. 

So, this is something which we have already seen in the case in the example where we check that 

R2 is a vector space because vector addition in this problem is the same as the vector addition 

that, so yes, V is closed under vector addition. 
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How about scalar multiplication? So scalar multiplication. So, let x, comma y be in R2 in V. V is 

the same as R2 but let me just call it V because that is what the vector space is being called as. 

So, let x, y be in V and C be an element from the field of scalars.  

Then C times the scalar multiplication how is it defined c times x, y is x, comma 0 which is an 

element in capital V, right it is after all, an element in capital V, which has the second coordinate 

0. Recall that V is nothing but the set of all tuples x, comma y with x, y in R. So, yes, this is also 

in V.  
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So, hence V is closed under both vector addition and scalar multiplication, we take two vectors 

and look at the vector addition of that that gives you back a vector in ok, so if you take two 

elements in V and if you look at the addition component wise, it is giving back an element in V. 

And therefore, it is closed under vector addition.  

And similarly, if you take any element x, comma y in any scalar, look at the scalar multiplication 

as defined here it is giving us back an element in capital V. Therefore, V is closed under vector 

addition and scalar multiplication. So, what is now needed to be checked for these two 



operations? Properties 1 to 8 need to be checked. All the properties 1 to 8 listed in the definition 

of the vector space should be satisfied for V to be a vector space with these operations. 

So, let us now check the properties involved in the definition. So, let us now check for the 

properties 1 to 8, which is listed in the definition of the vector space. So, property 1, so what was 

the first property? Property 1 dealt with whether this vector addition is commutative. So, let us 

take two vector, two elements in V x1, y1 and x2, y2 be in capital V. What do we need to do? 

We need to check that if v1 and v2 are two vectors in capital V, two elements in capital V, v1 

plus v2 should be the same as v2 plus v1.  

So, let us see what is x1, y1 plus x2, y2. x1, y1 plus x2, y2 is just component wise addition 

which is x1 plus x2, y1 plus y2. And what is, so notice that x1 plus x2 is just addition of two 

scalars. So, notice that x1 plus x2 is equal to x2 plus x1. And similarly, y1 plus y2 is the same as 

y2 plus y1, why is this the case? Because addition of scalars is commutative, real numbers if you 

add in whatever order you wish the answer is going to be the same that is the reason. So let us 

call this star and call this observation star star.  
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Then what is x2, y2 plus x1, y1 this again by component wise addition is going to be x2 plus x1, 

comma y2 plus y1, just component wise addition and by stars star this is equal to x1 plus x2, y1 

plus y2. So, let me write this by star star here, by star star. And what is this? This is equal to x1, 

y1 plus x2, y2 by star above. So, basically what we have established is x2, y2 plus x1, y1 is the 

same as x1, y1 plus x2, y2 thereby establishing commutatively. So, yes, property 1 is satisfied. 

Property 1 is satisfied.  
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Now, let us look at property 2. Property 2 dealt with associativity. So, if you take three vectors, 

v1, v2, v3 the question of whether, if you look at v1 plus v2 plus v3 the question of whether v1 



plus v2 is added first then added to v3 should not matter as compared to whether v1 is added to 

the vector addition of v2 and v3. So, let for that we need to take three vectors v1, v2, v3 and 

three elements v1, v2, v3, elements here typically look like x1, y1, x2, y2 and x3, y3, v1, v2, v3 

be element in capital V.  

So we are interested in what is x1, y1 plus x2, y2 plus x3, y3 whether this the same as yeah, we 

will come to that, so this, if you notice this is just equal to x1 plus x2, y1 plus y2 plus x3, y3 we 

added the first two vectors first and now this is going to be equal to x1 plus x2 plus x3, y1 plus 

y2 plus y3.  

But what do we know about the sum of scalars, sum of real numbers? We know that that is a 

associative addition. So, this is equal to x1 plus x2 plus x3. The order here does not matter. So, 

we will make use of that to write it like this. 

But notice that this is nothing but x1, y1 plus x2 plus x3, comma y2 plus y3 and what is this? 

This is nothing but x1, y1 plus x2, y2 plus x3, y3. And that establishes that property 2 be 

satisfied. So, hence property 2 is satisfied. So, what was property 3?  
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Property 3 talked about the additive identity. The existence of a 0 vector. So, my claim is 0, 0 is 

the 0 vector for the vector addition. So, in particular, 0, comma 0 is an element of V. So, if you 

look at x, comma y plus 0, comma 0, what do we have? This is equal to x plus 0, y plus 0.  



But any number added to 0 should give back the same number. This is equal to x, y. So, any 

vector v added to the 0 vector is giving us back v. So, yes, property 3 additive identity does exist, 

property 3 is satisfied. How about property 4?  
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Property 4 talked about additive inverse given any vector v we would like to look for another 

vector w such that v plus w is the 0 vector, 0 element. So, let, so this is Property 4. Let us see if 

this is getting satisfied. Property 4 demands that let x, y be a vector, be an element in capital V. 

The addition is the same as the addition in the vector space R2.  

So, we know what to expect and hence minus x, minus y is a candidate. Then minus x, comma 

minus y is an element of capital V and x, comma y plus minus x, comma minus y is just x minus 

x, x plus minus x which is x minus x, y plus minus x which is y minus y which is nothing but the 

0 element. So, yes property 4 also is satisfied. Every vector v has an additive inverse. What was 

the 5th property? 5th property is the existence of multiplicative identity. 
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So, property 5, so let us look at a vector v which is say x, y in capital V. So, an element in capital 

V is being taken we would like to check. So, if, so v be equal to this so what was the 

multiplicative identity demanding? It was demanding that one times v is equal to v for all v in 

capital V, this is what we should, we would like to check. 

But what is 1 times x, comma y so to do that let us go and recollect what, was the definition of 

the scalar multiplication which I am now underlining in the green here. Any scalar c times x, 

comma y is giving us back x, comma 0. As you can see, so 1 times x, comma y will give you 

back x, comma 0, so it does not matter what c is at. Every scalar should give you back the vector 



which is the first coordinate and 0 is I am putting this in the second coordinate. So, this is the 

definition, by definition, this is what it is. But if y is not equal to 0, then x, y is not equal to x, 0. 

So, this however, if say x, comma y is the vector 2, comma 3 let us say 3 not equal to 0. So, 1 

times 2, comma 3 here by definition is equal to 2, comma 0 which is not equal to 2, comma 3, we 

should have got 2, comma 3. If the property 5 is to be satisfied. So, hence property 5 is not 

satisfied. So, therefore, V is not a vector space with these operations. We have already solved the 

problem establishing that with these operations, V cannot be a vector space because the 

multiplicative identity, the property involved in the multiplicative identity is not getting satisfied. 

Well, out of curiosity, we could ask what about the remaining properties? It does not matter 

because we have already established that V is not a vector space.  
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However, just to satisfy our curiosity, let us look at the remaining properties as well, property 6. 

Property 6 so was about the multiplicative associativity, so if you look at ab times say x, comma 

y let me now do a quick observation. This is just going to be any vector, sorry any scalar times x, 

comma y by scalar multiplication is just going to be x, comma 0 the first coordinate and the 0 in 

the second coordinate. 

But we demand that this be equal to a times b of x, comma y right. And what is this? This is just 

a times x, comma 0. B of b times x, comma y is x, comma 0 and a times x, comma 0 will again 



be equal to x, comma 0. So, yes, this is equal if you can, if you have notice this is equal. 

Therefore, property 6 is actually getting satisfied. So, that is interesting. So, even though 

property 5 is not satisfied, Property 6 is still getting satisfied. How about property 7?  
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Property 7 demands that a plus b times x, comma y let us see what this is. This is equal to, it does 

not matter what a plus b say c. C times x, y this is going to be x, comma 0 and what is a times x, 

comma y plus b times x, comma y. Oh, this was Property 8, I guess. So, let me just put it here, 

property 8 satisfies or rather it is satisfied or not let us check. So, this is going to be equal to x, 

comma 0 plus x, comma 0 which is actually equal to x plus x, comma 0 which is 2x, comma 0, 

so this is not necessarily if x is say non-0 then this is not going to get satisfied.  

So, for example, look at 1 plus 1 on 1, comma 2 this by the first part will or rather direct. So, this 

is just two times, let me not use the green. This is just two times 1, comma 2 which is equal to 1, 

comma 0 by the scalar multiplication. Any scalar times a vector gives you the same coordinate in 

the first, it is the same first coordinate. But what about 1 times 1, comma 2 plus 1 times 1, 

comma 2? This is just going to be equal to 1, 0 plus 1, 0, which is equal to 2, comma 0. This is 

not equal as you can notice, and therefore property 8 is not getting satisfied. So, we have one 

more property, which is not getting satisfied. Not satisfied.  
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Actually, let me not now bother about property 7, but let me just tell you that or maybe I will just 

write it. We need to check that a times x1, y1 plus x2, y2 this is equal to a times x1 plus x2 y1 

plus y2 which is equal to x1 plus x2, comma 0. And what should this be equal to a times x1, y1 

plus a times x2, y2. But what is that? That is equal to x1, comma 0 plus x2, comma 0 which is 

equal to x1 plus x2 0 which actually are equal.  

And therefore, property 7 is satisfied. So, if you start worrying about all the properties, we will 

notice that the 5th property and the 8th property are not satisfied. Even if one of the properties 

are not satisfied, it cannot be a vector space. We just checked the remaining three properties out 



of curiosity, I would say. All right, so we have completed the first problem and concluded that 

the set V with the vector space operations, as defined in the problem, cannot be a vector space. 
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Now, let us look at the next problem, problem 2. Prove that the set w1, which is say x, y, z in R3 

such that 2x plus 3y plus z is equal to 0 is a sub space of R3. However, w2 which is the set of all 

x, y, z in R3 such that 2x plus 3y plus z is equal to 1 is not a subspace of R3.  

So, after looking through the solution, you will notice that 2x plus 3y plus z is equal to any non-0 

number not necessarily 1, you look at wk to be equal to x, y, z in R3 such that 2x plus 3y plus z 

is equal to K that will not be a subspace, it has to be equal to 0 otherwise, it will not be a sub 

space. This is the same proof we will go through.  

So, let us look at a solution. So, this is more like a, prove that, so let us call it a proof. So, w1 is 

subspace of R3 that is what we would like to prove here, but what, when does some subset 

become a subspace. You recall the definition, it is going to be a subspace if in the borrowed 

vector space operations, it is closed under both the operations.  

So, enough to show to check that w1 is a subspace enough to show that w1 is closed under the 

vector addition and scalar multiplication which is borrowed from capital V. So, let us take two 

elements and look for whether vector addition of those two elements in w1 gives us back an 

element in w1.  
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So, let x1, y1, z1 and x2, y2, z2 be two vectors in w1. What does it mean to say that something is 

in w1? Let me go back and remind you what w1 is. W1 is the set of all x, y, z such that 2x plus 

3y plus z is equal to 0. So, this implies 2x1 plus 3y1 plus z1 is equal to 0 and this implies the fact 

that it x2, y2, z2 is in w1 implies that 2x2 plus 3y2 plus z2 is equal to the scalar 0. 

We would like to see what happens to x1, y1, z1 plus x2, y2, z2 whether this particular vector is 

in w but what is the vector addition of this? This is component wise addition if you recall, this is 

going to give you x1 plus x2, y1 plus y2, z1 plus z2. And let us see if this belongs to the set w1 

but what is the requirement for this particular element to be in W1. It should satisfy the condition 

that 2x1 plus x2 plus 3y1 plus y2 plus z1 plus z2 this should be equal to 0. If at all this sum 

should be in w1, then this is what will happen.  

Then this is equal to let us write it out. This is 2x1 plus 2x2 plus 3y1 plus 3y2 plus z1 plus z2 

notice that all these are scalars. 2x1 is a real number 2x2 is a real number 3y1 is a real number 

3y2 is a real number and so on. And the vector addition is commutative and using that we can 

write this as 2x1 plus 3y1 plus z1 plus 2x2 plus 3y2 plus z2. Let us just go up notice that 

whatever I am putting now as star, this is equal to 0 plus 0 by star which is equal to 0 and 

therefore x1 y1 z1 plus x2 y2 z2 belongs to capital W by what we have just observed. So yes, w 

is closed under the vector addition, which is borrowed from R3.  
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How about scalar multiplication we have already seen similar ideas. So, let x, y, z be in capital 

W1 and C be in R then what is this? This is equal to cx, cy, cz and let us look at whether this 

vector in the right cx, cy, cz does it belong to the vector space W. So, you need to look for two 

times cx plus 3 times cy plus cz is equal to 0, which is a cz is this equal to 0 that is the question. I 

will just write it as C times 2x plus 3y plus z. But we know that 2x plus 3y plus z is 0 because x, 

y, z belongs to W1 and this is equal to C times 0 which is equal to 0.  

So, yes this implies W1 is a subspace. Now, what happens to W2? So, I would say that W2 let 

me do one thing. Let me note this part has maybe a star. I am going to use the star to conclude. 



(Refer Slide Time: 28:05) 

 

 



 

 

So, now is W2 is a subspace? That is what we would like to answer or that we would like to 

prove that w2 is not a subspace. So, in order to do that, we should show that it is not closed under 

either vector addition or the scalar multiplications. 

So let us take x1, y1 and z1 in 2 in W2 and x2, y2, z2 which is in W2. We would like to see if the 

vector addition is in W2, but we already checked this out. What is x1 y1 plus sorry x1, y1, z1 

plus x2, y2, z2, this is just equal to x1 plus y1. Let me not, let me quickly write it and we would 

like to see whether this belongs to W2. What is W2? Recall that W2 is defined in this manner, so 

I am underlining it in green. 2x plus 3y plus z the sum of the coordinates with these linear 

combinations should be equal to 1, that is the requirement.  



So, let us look at 2 times x1 plus x2 plus 3 times y1 plus of y2 plus z1 plus z2. Now let me show 

you what was put in star. Yeah. So, maybe this is what I would like to put in Star. This tells us 

that this is equal to 2x1, same argument tells us that this is equal to 2x1 plus 3y1 plus z1 plus 2x2 

plus 3y2 plus z2. But what is 2x1 plus 3y1 plus z1 that is equal to one because x1, y1, z1 belongs 

w1. Similarly, this is also equal to 1 and sum of these two will give you 2 but what was our 

requirement?  

Our requirement was that this vector, if you look at 2 times the first coordinate plus 3 times the 

second coordinate plus the third coordinate, we should have got 1 for it to be in the vector 

subspace. Here we are getting 2 and therefore, hence W2 is now this is not, so this vector, the 

vector sum is not in W2. W2 is not closed under vector addition. So, w2 is not a subspace. And 

hence, and therefore not a subspace. If you had taken scalar multiplication and checked even that 

would not have landed up here, it would give you something like C times 1 right and therefore 

not a subspace. 

So, even if one of the two conditions are not satisfied, it will not be a subspace. All right so we 

have proved or rather completed problem 2.  
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Ok, so the next problem is in the vector space of all functions from set 2 are, so let S be a subset 

of the real numbers and w be the set of all F in F of S, comma R such that F of S naught is equal 

to 0 for fixed x naught in capital S. So, what is F of S, comma recall. I will come to that. So, then 



prove that W is a subspace of F of S, comma R. Okay, let us look at solution to this problem 

rather proof because that is a proof that problem.  

So let us call it a proof. So, what was F of S, comma R? Recall that F of S, comma R is the set all 

functions from S to R. And what was the vector addition and scalar multiplication there it was 

point wise. So, with vector addition if you take two functions and if you look at F plus G, we 

would like to say that it is a function from S to R. So, we will define what this is set of point s in 

capital S. This is just F of S plus G of S which makes it into an honest function from S into R and 

what about cf of S.  

So, for, this is for F, comma G in F of S, comma R and this is equal to c times F of S where f is 

in capital F of S, comma R and c is in so, so this is vector addition and scalar multiplication, 

which we had defined during the lectures and it was left as an exercise for you to check that this 

is indeed a vector space. So, like in the first problem, you should have checked for whether it is 

closed under vector addition and scalar multiplication and see in what the properties 1 to 8, 

whether properties 1 for 8 are indeed getting satisfied. 

Yeah, in the process, you would had to guess what the additive identity is what the inverse of a 

given function is and so on. But they are all quite straightforward. Ok so our goal here in this 

problem is to show that we are given a very particular subset.  

This is the set of all those functions F from S to R where F satisfies the condition that F of s 

naught is equal to 0 where s naught is some fixed point. So, if say S is the open interval is 0 1 

and s is S naught is half, this will just turn out to be all functions from 0 1 to R such that F of R is 

equal to 0 one such example.  

Ok. So, we will show that W is always a subspace. Again like in the previous problem, we just 

have to show that W is closed under vector addition and scalar multiplication, but that is quite 

straightforward.  
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So, let F, comma G be in W. This implies that F of S naught is 0 and G of S naught is 0. Ok, so 

now let us look at the vector addition of F plus G. And look at what is the value at S naught but 

by the definition. F plus G of S naught is equal to F of S naught plus G of S naught which is 

equal to 0 plus 0, which is equal to 0. So, therefore, it implies that F plus G belongs to capital W.  

How about scalar multiplication cf times S naught? So this is for, then for F G in W and c in R, 

this is what is getting satisfied. cf at S naught is equal to c times F of S naught but F is in capital 

W means that F of S naught is 0. This implies that C times 0, which is equal to 0 hence cf is in 

W. So, W is closed under both vector addition and scalar multiplication, W is hence a subspace 



of F of S, comma R. Next, let us do a problem which is similar to one of the assignment 

problems.  
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Problem 4 demands that we check whether the first vector can be written down as a linear 

combination of the other two vectors. So, check whether the first vector is a linear combination 

of the other two vectors in the following. The first one is minus 2 2 2, 1 2 minus 1, minus 3 

minus 3 3 in R3 and how about the second one? Let us just to two of them.  

This is just going to be x cube minus 8x square plus 4x, x cube minus 2x square plus 3x minus 1, 

x cube minus 2x plus 3. This is in P3 of R. So, we need to check whether the first vector can be 

written as a linear combination of the other two vectors. Let us look for whether it can be done. 
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So, solution. So, we would like to see if so want a, comma b in the field of scalars such that 

minus 2, 2, 2 is equal to a times 1, 2, minus 1 maybe I should just change this, this makes it, this 

is not going to make it easy, plus B times minus 3, minus 3, 3.  

Yeah. Let us see if we can do that or want to check. Let me just reword what I want, want to 

check for the existence of a, comma b in R such that this happens. Ok, so let us write it down. 

Let us write down what this means. What is the right hand side here, the right hand side just tells 

us that this is equal to a plus minus 3b which is a minus 3b. This is 2a minus 3b, and minus of a 

plus 3b. So, what we want is a solution for the system of equations which is written down here 2 

and minus of a plus 3b is equal 2.  
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Ok so what can we say from here, a minus 3b is equal to minus 2, these two directly implies a 

minus 2 is equal to 2, which implies a is equal to 4 and this implies two times 4 minus 3b is 

equal 2. Oh, sorry. 8 minus 3b is equal to 2 which implies b is equal to minus of 6 by minus 3, 

which is 2. And is it consistent here? We have minus of 4 plus 3 into 2 is 6 which is equal to 2. 

Yes. So, my claim is, so a equal to 4, b equal to 2 will satisfy the relevant equations that has been 

written down. So let us see.  
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So, hence easy to check that minus 2, 2, 2 is equal to 4 times 1, 2 minus 1 plus 2 times minus 3, 

minus 3, 3. So, yes, therefore, we can write the first vector as a linear combination of the other 

two in R3. Ok how about the next one? Okay. So, let me write this down here.  
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So, this is 2. So, let us now see what 2 is. 2 was x cube minus 8x square plus 4x, x cube minus 2x 

square plus 3x minus 1 and x cube minus 2x plus 3, this in P3 of R, all polynomials of degree 

less than or equal to 3.  

Ok, so if we can indeed do that, so want to check if there exist a, comma b in R such that x cube 

minus 8x square plus 4x is equal to a times x cube minus x square I am sorry x square plus 3x 

minus 1 plus b times x cube minus 2x plus 3. But what does this mean? This means what is the 

right hand side. This is equal to a plus b times x cube plus minus of 2a times x square plus 3a 

minus 2b times x plus 3b minus a. So, this is exactly what the right hand side is going to be. We 



would like to see if there exist a and b such that the right hand side is equal to the left hand side 

here. 
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Ok. So, what does this imply by equating the coefficients of the monomials involved we have a 

plus b is equal to 1 minus of 2a is equal to minus of 8, 3a minus 2b is equal to 4, 3b minus a is 

equal to 0. Ok, so let us see. This implies so let us see the first, second equation minus 2a is 

equal to minus 8 implies a is equal to minus of 8 by minus of 2 is equal to 4 and a plus b is equal 

to 1 implies b is equal to 1 minus 4, which is equal to minus 3. 

Now, let us see if the final does, so these two implies this. Let us see if the next two equations 

are consistent. If it is not, then we do not have a linear combination. So, basically with a equal to 

4 and b equal to minus 3, let us look for whether the third and the fourth equation are satisfied. 

Ok so what is this going to be? This is just going to be 4 into 3, 12, minus 2 into minus 3 which 

is 6 which is equal to 18 which is not equal to 4, so that that cannot be a consistent choice of a 

and b, which satisfies all these equations.  

So, we do not even need to bother about whether the fourth equation can be satisfied. So, the first 

two equation forces a to be 4 and b to be minus 3, but with 4 and minus 3, the third equation 

cannot be satisfied.  
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Hence, there does not exist a, comma b in R such that, well the first let me not, so let me put it 

this way such that star is satisfied. Ok, so we have checked for one case where the first vector 

could be written down as a linear combination of the other two and another in which 

infrastructure cannot be written as a linear combination of the other.  
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Okay, so the next problem involves the span. So, let me call it problem 5. So, let s1 s2 be subsets 

of a vector space V prove that span of s1 intersected with s2 is contained in the span of s1 

intersected with span of s2. Moreover, give an example when one span of S1 intersected with S2 

is equal to span of S1 intersected with span of S2. And 2, when the span of S1 intersected with 

S2 is a strict subset of span of s1 intersected with span of s2. 

So, the problem not only demands us to prove some statement, it also asks us to come up with an 

example. This is one of the cases where you will have to sit down, look at various examples you 

have already seen, look for examples of the span and see that there you know, the conditions are 

being satisfied or not. This is a good problem for you to think about the various vector spaces 

that you have already seen. So, this is an interesting problem in that sense.  
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Okay, so let us look at a solution. So, we need to check for the span of S1 intersected with S2 

being a subset of span of S1 intersected with span of S2. So, let us take how do we go about 

proving such a statement? We take some arbitrary element in the left and prove that it is also 

necessarily an element in the right. But here it is quite straightforward.  

So, let V be in span of s1 intersected with s2. What does it mean for a vector v to be in the span 

of some s1 intersected with s2 that means that there exist some v1 v2 up to vk in s1 intersected 

with S2, such that v is a linear combination of v1 v2 up to vk i.e. there exist v1 to vk in S1 

intersected with S2 and a1 to ak scalars such that v is equal to a1v1 plus a2v2 plus up to akvk. 



Ok and what is our goal? Our goal is to show that v is in the span of s1 intersected with span of 

s2.  
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Okay, so what does it mean to say that v1 v2 up to vk belongs to S1 intersected with S2 this 

implies in particular that v1 to vk belongs to s1 as well belongs to both s1 and s2 that is what it 

means for it to be in the intersection. So, in particular it belongs to s1. And since span of s1 is 

going to consist of all linear combinations of the vectors in s1 this implies, so this implies a1v1 

plus up to akvk belongs to the span of s1 by a very similar argument though this is by a similar 



argument instead of S1 if you had just picked s2. You would have got that a1vi plus a2v2 up to 

akvk belongs to span of s2 as well.  

So, in particular, it belongs to both span of S1 and span of S2 and therefore, it belongs to the 

intersection. So, we used two aspects here. The one I am underlining in green was because v is in 

the span of s, span of s1 intersected with s2 and therefore there exist some a1 a2 up to ak such 

that we get a linear combination of v1 to vk. And the one I am underlining in green right now 

follows because every linear combination of v1 v2 up to vk which are in s1 should also be in the 

span of s1 so both the aspects are being used to establish this proof, but that is precisely what we 

wanted. In fact, we have established the proof as the point.  
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So, this vector which I just underlined is the vector V. So, this implies v is in span of s1 

intersected with span of s2. So, we take any arbitrary vector in span of s1 intersected with s2 that 

will be in span of s1 intersected with span of s2. Therefore, or rather hence span of s1 intersected 

with s2 is contained in span of s1 intersected with span of s2. Ok, so now we have proved one 

part.  

So, we have established this part. So, what is left is to give examples of when span of s1 

intersected with S2 is equal to the span of s1 intersected with span of s2 and when it is not equal. 

So, I will not go too much into it.  
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Let me just give you the examples straight away and let me leave it for you to check that if so, 

the first case where it is equal. Let me just take the simple vector space that can come to that we 

can consider which is say R2 or maybe R3.  

In R3 consider s1 to be say the vector 1 0 0, 0 1 0 and 1 1 0. This is our S1 and what about s2, s2 

is 0 1 0, 1 1 0, well 1 2 0. So, you should check that the span of, what is s1 intersection with s2? 

s1 intersected with s2 is equal to 0 1 0, 1 1 0. And what is the span of s1 intersected with s2? 

This will be all linear combinations of the vectors returned to the right and you should take that 

this is the set of all x, y, z in R3 such that z is equal to 0.  

In fact you should check that span of s1 is also let me call this w, it is also equal to W, which is 

the same S span of S2. So, yes, this is a case where all three are equal and therefore span of s1 

intersected with s2 is equal to span of s1 intersected with span of s2. How about the second case? 

Yeah, actually, we could have also arranged for a case where all the three are not equal.  

And still we have this, but I will leave that as a thing to think about for you, this is just, after all 

picking the right vector. So, you should pick various choices and see how it works out. How 

about the second?  
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So, let me just give you an example and leave the rest to you. We would like to get hold s1 and 

s2 such that span of s1 intersected with s2 is strict subset of span of s1 and s2. That is not 

difficult. Well, we just take, let us do this, let us look at in R2, let S1 be equal to the vectors e1 

e2 which is 1 0, 0 1. And s2 be the set 1, comma 1; 1, comma minus 1 and let me leave it for you 

to check that span of s1 is equal to span of S2 is equal to R2.  

By now you know that this is a basis and therefore the intersection is also R2. But what is s1 

intersected with s2? This is empty and the span of s1 intersected with S2 is just the span of the 

empty set which is the 0 subspace. Yes, this is a clear case where it is a proper subspace or rather 

it is a subspace which is not equal to span of s1 intersected with span of s2. Ok, the next problem 

demands that we check whether a particular set is linearly independent or not. 
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So, problem 6. Check whether the following set what is the set here? The set here is 1 1 0 0 0 0, 

0 0 1 1 0 0, 0 0 0 0 1 1, 1 1 1 0 0 0, 0 0 0 1 1 1. So, check whether this following set s is linearly 

dependent in which is the vector space this is in the vector space of all 3 cross 2 matrices over R. 

Okay, so solution. So, what do we need to do to check whether a given set is linearly 

independent or not? We should check for whether there exist a linear combination of it, which is 

equal to 0. Okay, so suppose there is a linear combination.  
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So, let a1 a2 ok we would like to, to check whether S is linearly dependent or independent either 

way, we want to check for the existence. The existence of what? The existence of scalars a1 a2, 

how many are there? 1, 2, 3, 4, 5 a1, a2, a3 up to a5 in field of scalars such that the linear 

combination a1 times 1 1 0 0 0 0 plus a2 times 0 0 1 1 0 0 plus a3 times 0 0 0 0 1 1 plus a4 times 

(0 0 0 0) 1 0 1 0 1 0 a5 times 0 0 0 1 1 0 is ok right.  

What is the 0 vector here? Remember that the vector space that we are talking about is the vector 

space of all 3 cross 2 vectors, sorry 3 cross 2 matrices over R and the 0 vector there is the 0 

matrix which consist of the 0 as it entries. This is 0 vector which is 0 0 0 0 0 0 this is precisely 

what we would like to check, whether there exist a1 a2 a3 a4 a5 such that this linear combination 

is the 0 vector. 
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Ok, so if we have to translate it using the vector addition and the scalar multiplication that is 

involved in M3 cross 2 of R, which is basically component place in both the cases. This is just 

going to be let me write down the answer directly. This is going to be a1 plus a4, a1 plus a5, this 

is a2 plus a4, a2 plus a5, a3 plus a4, a3 plus a5. This is the matrix to the left after doing the 

calculations and this we are demanding to be equal to the 0 vector in the vector space of 3 cross 2 

matrices over R.  

So, this is what the demand is. But what does that mean? This means that component wise they 

are equal. That means a1 plus a4 is 0, a2 plus a4 is 0, a3 plus a4 is 0 and the three implies that a1 



is equal to a2 is equal to a3 and how about the other one? a1 plus a5 is equal to 0. And this also 

tells us that a4 is equal to minus of a1 whatever the value of that is. This is also a2 plus a5 equal 

to 0, a3 plus a5 equal to 0 which implies that a1 is equal to a2 is equal to a3 again, which is 

consistent and a5 is equal to minus of a1.  
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So in particular if a1 is equal to 1, then a1, a2, a3 are all 1, a4 is minus 1 and a5 is also minus 1. 

So, then what do we have? Then let us check for 1 1 0 0 0 0 plus 0 0 1 1 0 0 plus 0 0 0 0 1 1 plus 

minus 1 times 1 1 1 0 0 0 or otherwise 1 0 1 0 1 0 plus minus 1 times 0 1 0 1 0 1. This will just 

turn out to be the 0 vector which is true and therefore the set is linearly dependent. Hence, S is 

linearly dependent. The next problem demands that we check for a subset to be linearly 

independent.  
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So, this is problem 7. So, let S be a set of non-0 polynomials in P of R. Let us do one thing, let us 

put it as a finite set. Let S be a finite set. I do not need to impose this you should think about why 

this is true when it is not impose; the finiteness condition is not being imposed. They should still 

be true but nevertheless, let S be a finite set of non-0 polynomials in P of R such that no two 

polynomials have the same degree.  

So, if one polynomial is a X square plus 1, then that other polynomials, none of them can have 

degree 2 because x square plus 1 is already having degree 2, so all the polynomials have distinct 

degrees. If at all there is a polynomial of say degree 2 there would be only one polynomial which 

has degree 2.  

So, they have distinct degrees ok no two of them have the same degree. Then prove that S is 

linearly independent. So, as much as the problem might sound sophisticated. It is actually quite 

simple to prove if you make the right observations.  
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So, let us give a proof a solution to this problem. So, we know that S has, S is a finite set which 

has distinct degrees. So, what we will do is we will pick the polynomial in this, which has the 

least degree. So, let P1 be the polynomial in S with least degree. Let us say it is d1. P2, similarly, 

be the polynomial which has least degree, however greater than d1. 

We know that least degree is d1. So, let us, let P2 be the polynomial in S with degree with degree 

d2 with the least degree. Let us call this d, degree let us call it. Let us call the degree let of P1 be 

equal to d1. So, d2 degree, least degree greater than d1 so there will be only one such polynomial 

and let degree of P2 be equal to d2. So, notice is that d1 is less than d2 and so on. So, pick pk. 
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So, therefore, after finitely many steps such in the algorithmic process. We have S is equal to P1 

P2 up to say Pk, there are finitely many of them such that degree of Pi is equal to di and d1 is 

less than d2 is less than d3 less than dot dot dot dk. So, pk has the highest degree and Pk minus 1 

has degree less than the degree of Pk and so on. Okay, now we are almost done. Suppose, a1p1 

plus a2p2 plus up to akpk is equal to 0 then what do we know?  
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Let me ask you what the degree, so let this be equal to q, check what will be the coefficient of x 

to the power dk will be equal. Check that this is equal to ak because a1 a2 up to ak minus 1 do 

not have x to the power dk in its polynomial expression because all of them have a degree less 

than dk, only pk has the monomial x to the power dk. 

And therefore, the coefficient of pk would be ak times the so ok. So, I have to be a bit more 

careful times the coefficient of x to the power dk in pk, which is an non-0 number, so let us do 

one thing, let us call it bk where bk is equal to the coefficient of x to the power dk in pk of x. But 

we know that we are looking at this being equal to the 0 polynomial. 
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Hence, equating the coefficients this implies that ak bk is equal to 0. But we know that bk is not 

equal to 0, why? Because pk has degree x to the power, pk has degree dk and therefore, if its 

coefficient is 0. Then we cannot have its degree to be equal to dk. This implies ak is equal to 0. 

Why? Let me just note down the reason since bk is not equal to 0 or rather, since bk equal to 0 

implies that degree of pk is not equal to bk. 

But we know that degree of pk is equal to dk and therefore, bk cannot be 0 and therefore, ak has 

to be necessarily 0. Ok so let us get back to our star. We have just established that ak is 0.  
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This implies that a1p1 plus a2p2 plus up to ak minus 1, pk minus 1, this is equal to be 0 

polynomial. Because ak is 0, the last polynomial does not contribute but by a similar argument 

we can conclude that ak minus 1 is also equal to 0 and so on.  

And by a similar argument, now once ak minus 1 is 0 inductively you can say that now a1 a2 up 

to, by repeating the process about not inducting, let me just say repeating the above process. We 

have a1 or rather ak equal to ak minus 1 equal to up to a1 equal to 0. But that is precisely what 

we wanted to prove, if you notice if there is a linear combination of p1 p2 up to pk equal to 0, we 

have just established that the coefficients are necessarily 0.  
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This implies that S is linearly independent. So, the next problem is about proving whether a 

given subset is a basis of the given vector space.  
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So, this is problem 8. So, determine whether the following subsets or following sets are basis for 

the vector space or subspace W, a of P of R such that 2a plus b plus c is equal to say 0. So, where 

is this a subspace, subspace w in P2 of R. So, we are ok so what are the sets let us see, the first 

set is S which is given by x square minus 2, x square minus 2x or rather plus 2x minus 3.  

2, S is equal to 3x square minus 2x minus 1. So, this is 2a plus b minus C. So, S is equal to 3x 

square minus 2x minus 4, x square minus x minus 1, 2x square or rather minus 2x square plus x 

minus 2, 4 plus 3. And third one would be S to be say x square minus 2, minus 2x square plus x 

plus 3. Let us take these three. Ok, so we need to check whether the following subsets are basis 

of W. What was W? Let me just put W in your view, W is the set of all those polynomials in P2 

or R whose coefficients satisfy some relation.  

So, what do we need to check, whether something is indeed the basis of W? We need to check 

that first condition is to see whether it is linearly independent. And the second condition would 

be to check whether the span of the given set. So, let us do that. 
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So, solution. So, the first problem, let us do both. Let S be x square minus 2, x square plus 2x 

minus 3. So, linear independence, so let a, comma b be scalars such that a times x square minus 2 

plus b times x square plus 2x minus 3 is equal to 0, the 0 polynomial. 

So, that would imply a plus b times x square plus 2bx plus minus of 2a minus of 3b is equal to 0. 

But what does it mean to say that a polynomial is 0 or its coefficients are 0. This implies 2b is 

equal to 0 and hence b is equal to 0. And the first one a plus b is equal to 0 implies a is also equal 

to 0, which is inconsistent with minus of 2a plus minus of 3b equal to 0. So, yes, this forces a and 

b to be equal to 0. 



Hence, S is linearly independent. Yes. So, the first thing to note, which I just skipped is to check 

whether s is a subset of W, x square minus 2 if you if you notice x square minus two will just 

satisfy 2a minus 2a plus b plus c should be 0 so 2 minus 2 is 0 and yes and 2, 2a is 2, 2 plus 2 

minus 3. Yeah. So, this is a problem. This cannot be in. Oh, no, this is bad. 2 plus 2 4 minus so 

this should have been something like minus 4 or something.  

So, let me just do one thing, let me tweak it so that you know, I gain what I want so it has to be 

for 4 notice that if it is not 4 that vector will not be in W.  
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So, let me come down and slightly change everything. Well, I would like to have that this 

particular vector is in W because otherwise we can straightaway say that these vectors are not in 

W and hence it cannot be a basis, but yeah, so at least let us make it a little more challenging by 

taking two vectors in W and checking for whether it is a basis.  

So, yes, this is now in this case let us check once more x square plus 2x minus 4 will satisfy 2 

plus 2 plus minus 4, which is 0. So, this is a subset of W and this argument which would not 

have been which is not disturbed at all. So, let me, let us go back once more and check line by 

line. Suppose, you have a linear combination which is equal to 0 and grouping for the 

coefficients we get a plus b is 0, 2b is 0, minus of 2a minus 4b is 0 or rather a plus 2b 0. 

But all the, the first two forces, both a and b to be 0 and it is consistent with the third. Therefore, 

a and b are forced to be 0. Therefore, S is a linearly independent set, but we are only halfway 

through. We have just shown that S is a linearly independent subset of W and the question is 

whether S is a basis. So, we have to check for whether it is a spanning set. Let me not check 

brute force that this is a spanning set. I would rather use an indirect argument to conclude that it 

is a spanning set.  
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So, if S is, so what is the meaning of S being linearly independent that means that dimension of 

W is greater than or equal to 2. Why is that the case? That is because every linearly independent 

set is contained in a basis. And therefore, S being linearly independent means that there exist a 

basis of W which contains S, and therefore it should have at least size 2, so dimension of W 

should be greater than or equal to 2.  

If S is not a spanning set. So, if S is not a spanning set then there exists some polynomial P in 

capital W such that P is not in span of what were the two polynomials or span of S. Let me just 

call it S, span of S. That is what it means. And therefore, S Union P is linearly independent.  
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And that would imply that dimension of W is at least 3, but it cannot be more than 3 because P2 

of R has dimension 3 which is equal to the dimension of P2 of R. And what do we know about 

(dimen) subspaces of P2 of R, which has dimension equal to 3. It has to be necessarily equal to 

P2 of R. This implies that W is equal to P2 of R. But this is a contradiction. Why is this a 

contradiction because every element in P2 of R does not satisfy the equation of the coefficients, 

which I am now underlining in green.  

For example, you look at 2x square. 2x square has coefficients 2 for x square and 0 and 0 so the 

2a plus b plus c will give us 4, which is not equal to 0, so P2 of R every element of P2 of R does 



not satisfy this relation when it comes to coefficients and therefore what was our assumption? 

So, we proved this problem, which apparently looked very numerical by a contradiction 

argument. So, what was the, yeah. So, if S is not a spanning set, this was the assumption we 

started of it and we arrived at a contradiction.  
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And therefore, hence, S is a spanning set that means S is both a spanning set and a linearly 

independent set, which implies that S is a basis of W. All right, so we know have ok we can 

conclude something more. This means that a dimension of W is equal to 2. Dimension of W is 



equal to 2. Ok good because if you look at 2 which I just underlined in green S is a subset of, I 

hope it is a subset of W.  

So, notice that S has three elements from W and we know that dimension of W is equal to 2 and 

therefore, you take any subset of W which has more than two elements. It should necessarily be 

linearly dependent by one of the consequences.  
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So, let me say this, S cannot be linearly independent since by one of the consequences of the 

replacement theorem, the size of any linearly independent subset of W should be less than or 

equal to or let me write it like this cannot be greater than the dimension of W. And this has 3 

elements, which is more than the dimension of W. And therefore, S is not a basis.  
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Ok so now let us come to problem number 3. Problem number 3 has two vectors x square minus 

2 and minus 2x square plus x plus 3 minus 2x square minus 4 plus 1 plus 3 is 0. Yes. So, this is a 

subset of S it consists of two vectors. We would like to see whether it is a basis again by one of 

the consequences of replacement theorem.  

It is enough to check whether a subset of W of size 2 is linearly independent or rather let me put 

it this way, to check that S is a basis of W it is enough to check for either linear independence or 

the spanning property.  
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So, (())(84:03) I just said by a corollary to the replacement theorem to check whether S is a basis, 

it is enough to check for linear independence. And why is that the case? Because since, S has 

dimension of W equal to 2 elements. 

So, if this set is linearly independent its necessarily a span set. We could have done the other way 

also. We could have just checked for spanning property and any spanning set which has 

dimension of W elements should necessarily be linearly independent set. But we will just check 

for linear independence. What was the set S?  
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S was x square minus 2, minus 2x square plus x plus 3 and the check for linear independence is 

straightforward. If a times x square minus 2 plus this b times minus 2x square plus x plus 3 is 

equal to 0. This would imply a minus 2b times x square plus bx plus 3b minus 2a is equal to 0. 

And from this we have a minus 2b is equal to 0, b is equal to 0, 3b minus 2 is equal to 0. The 

second equation already tells us that b is equal to 0. And along with the second equation, both 

first or third, which is just consistent tells us that a is equal to 0 and b is equal to 0, therefore, we 

have established that it is linearly independent.  
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And therefore, it is automatically a spanning set and which makes it into a basis of W. So, the 

next problem demands that we determine whether what the dimension of R given subspace is ok.  
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So, problem 9. For a fixed scalar a or rather c for a fixed scalar c, let W be the set of all 

polynomials in Pn of R such that P of C is equal to 0. Check that this is a subspace, be a subspace 

of Pn of R. Find or determine the dimension of W.  
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Ok, so let us look at the solution. So, of course one needs to check that W is indeed a subspace 

even though it is being said that it is a subspace. It is our job to check that that is a subspace 

because otherwise there is no question of finding dimension. But yeah, so let us as of now, let me 

leave that as an exercise for you to take that it is indeed a subspace. Our goal in this problem, 

however, is to determine the dimension of W. 

Ok so what is W precisely? W is the set of all polynomials such that P vanishes at C. So, we 

know from our basic algebra. We know that if P of C is equal to 0 then P of X is what? This is 

going to be X minus C times Q of X where degree of Q of X is degree of P of X minus 1. So, this 

is exactly what our P of X will look like. So, in particular, if Q of X if you look at any 

polynomial of the type X minus C times Q of X that will satisfy the condition that it vanishes at 

C. 

So, it is if and only if it is in some sense, P of C is 0. We know that let me put it this P of C is 0 if 

and only if this is the case. So, if you look at Q of X varying over all polynomials with say 

degree 1 to, degrees 0 to n minus 1. So, this is Pn of R which is up to degree N. In particular, if Q 

of X is any polynomial degree and minus 1, we should be able to get hold of this. So, that gives 

as a natural candidate.  
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So, let me put as a claim. S be equal to 1 times X minus C, which is X minus C, X times X minus 

C, X square times X minus C, X to the power n minus 1 times X minus C. This is a potential 

candidate is a basis of W such as described the motivation to S or conjecture that this particular 

set will be a basis.  

So, the fact that S is independent follows from one of the problems we have just proved that S is 

linearly independent follows from problem 7. What is that problem 7 said that if there are if there 

is a subset S, which consists of polynomials which have different degrees, no two of them have 

the same degrees, same degrees, then they should be linearly independent.  



So, notice that we have, we can. We could have done this. The same argument goes through in 

Pn of R as well. So, let me write it. I think problem 7. So, problem 7, why? Because this is a 

degree 1, this is a degree 2 this is degree 3 and this is degree n all these have different degrees, so 

they are necessarily linearly independent.  
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And what is the size of n so that means dimension of w linearly independent where in W. So, all 

these are vectors in W and they are linearly independent, therefore dimension of W should be 

greater than how many of them are there? This is 0, 1, 2 up to n minus 1 so there are n of them 

greater than or equal to n.  

So, if dimension of W is not equal to n, if dimension of W is greater than n, it has to be n plus 1 

because Pn of R has dimension n plus 1. This would imply dimension of W will be equal to n 

plus 1 which is equal to the dimension of Pn of R. We have used this type of an argument as well 

earlier in one of the problems that would imply w is equal to Pn of R only subspace of Pn of R 

which has dimension equal to 1 plus n itself.  

But that cannot happen because this is a contradiction. Because what was our W? W was the 

collection of all those polynomials which vanishes at C. So, in particular, if you look at the 

constant polynomial, 1 at C is equal to 1, which is not equal to 0, constant polynomial, non-0 

constant polynomials do not vanish at any point. And W should necessarily vanishes at every 

element in w should necessarily vanish at c vanish at c I mean P of c is equal to 0. So, this is a 

contradiction which implies dimension of W so this assumption which I just under which I just 

underlined cannot happen.  

This implies dimension of W is equal to n. But, what do we have? We have now S which is equal 

to Oh, we already have just proved that dimension of S is equal to dimension of W is equal to n 



which is what our goal was. So, also notice that S is indeed a spanning set. So, yes this is our 

solution to the problem. 


