Linear Algebra
Professor Pranav Haridas
Kerala School of Mathematics, Kozhikode
Lecture 1.1
Vector Spaces

Hello, welcome to this course on Linear algebra. My name is Pranav, | am from Kerala School
of mathematics. This is a 12 week course and a detailed description of this course can be found
in the website of the course. The textbooks we will be following is called, the primary textbook
that we will be following is called Linear algebra. It is by Friedberg Insel and Spence. Let me

just note it down.
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Primary textbook is called Linear algebra by Friedberg, Insel and Spence. This is a very
classical subject. There are many beautiful textbooks written on the subject of linear algebra. |
would also refer you to another book which is called Linear algebra done right, by Sheldon
Axler. This is also a very elegant book. We will be focusing quite a lot on giving rigorous
proofs and solving many problems. We will have a problem session every week and this will
be supplemented by weekly assignments. So, you will be, you are very strongly encouraged to
work on the assignment problems on your own. Solving problems is the most effective way to
understand the concepts and the theory that we have developed including theorems that we

prove in much greater depth.
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Alright, so that is all I have to say to introduce this course to you. Let us begin the study of
linear algebra. Let us start by recalling the concept of scalars. In high school when we do
physics, when we do Newtonian mechanics, a scalar is a terminology which is used to describe
anything which can be described by a number. For example, the mass of an object or the speed
at which a car is going or the distance somebody has walked and so on. So, a scalar very
informally speaking is something which can be described by just a number. By a scalar in this

course, we will just mean a real number, by a scalar we mean a real number.

We are all familiar with real numbers. Given two scalars, we know that we can add them and
obtain a new scalar. You could also multiply them and get back another scalar. If say 2 and 3
is given, we know that 2 + 3 is equal to 5 a real number. 2 times 3 for example is 6 (which) is
also a real number. We know that given two scalars or two real numbers a, b we can add and
multiply them to obtain another real number. I will maybe say it separately. We can add them
to obtain another real number. We can also say multiply them to get another real number. These
are operations which we are very familiar with. Been using these operations for a long time
now. What are the properties of addition and subtraction that we are quite familiar with? Let

us just quickly note down some of these properties.
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These operations: addition and multiplication operation, they satisfy a few properties. The
operations satisfy the following properties. Given say a, b, a + b is equal to b + a. The order in
which we add does not matter. If we add say 2 + 3, we get 5. If we add 3 + 2, it also gives us
the same number 5. Similar is the case with multiplication: you multiply say 5 and 10 you get
50, and 10 and 5 if you multiply, again it is 50. These operations, they commute: the order in

which the addition or the multiplication is done is not important.

Another property that we are familiar with is that if we take three scalars, say a, b, ¢ are scalars,
let us look at a + b + c. Now the question arises about whether a + b is added first or whether
b + ¢ is added first and then added to the other. This property tells us that the order in which
we do (addition) is irrelevant, does not matter. The addition is called, what is called as
Associative. And similar is the case with our multiplication. The order in which we multiply

the three scalars is not important.

We also know that there is a 0 real number right? There is a real number called 0 which is very
special. If you add any number to it you get back the same number. If you add say 3 to 0, we
get back 3. So there exists 0 such that a + 0 is equal to a for every scalar a. We also have that
given any scalar a, if you multiply it to 1, we get back a (correction). So just like 0 behaves for
addition, 1 behaves as an identity for multiplication. So, there exists 1 such that a times 1 is

equal to a for every scalar a.
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And we have more, given any scalar a we know that -a (exists). If 2 is given, we know that -2
is an additive inverse. If you add -2 to 2 we get back 0 right? There exists an inverse so let me
write it as additive inverse. (There exists) b such that a + b is equal to 0 right. Similarly, given
any non-zero scalar we have a multiplicative inverse. Given any non-zero scalar a, 1 by a times
a (is equal to) a times 1 by a is equal to 1, right? If you consider 2, 1 by 2 is the multiplicative
inverse of 2. Similarly b is this -a (above). So | could have just written it that way, it is ok does

not matter. Every element will have both additive inverse and multiplicative inverse.
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And the addition and the multiplication operation are not standing apart, they interact with each

other. So given scalars a, b, c, a times b + c is equal to ab + ac. We have summarized some of



the very common properties of real numbers we are quite familiar with. We know a lot more
about real numbers, but let me just single out these properties because these are the properties

of real numbers we will be using, properties of the scalars that we will be using in this course.

The collection or the set of all scalars is called the field of scalars. | will not write it in capitals,
just underline it, (and is) called the field of scalars. It is sometimes denoted, sometimes denoted

by F. In this course, our field of scalars will always be Real Numbers most of the time.
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In this course our field of scalars is field is the set of Real Numbers, most of the time. Real
Numbers are denoted by R. Alright. Let us now jump into the definition of what a vector space

is. So what is a vector space?
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Let us discuss some vector spaces which are quite familiar and then we will give a formal
definition. The next topic or the first topic rather is vector spaces. Let us start with something
very familiar, something which we are all quite familiar with. Consider the Cartesian product
R2 from coordinate geometry. What is this? This is just the set of all (x, y) such that both x and
y are in R. They are ordered tuples (X, y) where each of the coordinates are real numbers. The
order matters. So for example (2, 3) they are ordered tuples. Remember that. (2, 3) is different
from (3, 2). Right? And we are also quite familiar with the notion of adding 2 elements in R2.
So if say (1, 0) and (3, 4) is given to you, we know that we can write this as (4, 4). Right? We

are also familiar with the notion of multiplying scalar to vector in R2,

So given say for 3 or 2 times, let us put something here 3.5 and 2, this we know is equal to 7
and 4. From coordinate geometry we know that we can do these operations on the space R2.
Right?
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We also have considered one more space R3, in physics many times. This has been dealt with.
This is the Cartesian product of Real Numbers with itself 3 times. This again is an ordered tuple
where all x y z are in R. They are all real numbers so again ordered tuples. The order in which
we are considering matters. And in a very similar manner, we have defined addition in R3. So,
say (2, 3, 1) is added to (5, 6, 4) what was the answer? This will be just (7, 9, 5). Right? We
know that it is taken component-wise and added. If you multiply four times (1,0,1) we know
that this is (4,0,4). Again this is done component wise. These are operations which we are
already familiar with, from our high school physics for example. R3 for example was used to
describe the components of say the velocity or the acceleration for that matter. And when we
add two velocity vectors, we just added it in this manner: x component, y component, z

component and so on. All right.
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These two examples and the operations therein satisfy certain properties. Notice one thing
before we go ahead. The addition here, that is being described, for example, this one is for two
vectors in R2 and this one is for two vectors in R3. We cannot take a vector in, an element in
R2 and an element in R3 and add. Right? It does not make sense to add an element in R2 to an
element in R3. Right? So, these operations of say, addition and multiplication by a scalar, they
satisfy certain nice properties. Or let me put it in a different manner: there are certain properties
which are satisfied by these operations, which are of great interest to us, which has the potential
to abstractify. It can be put in a more general setting and we could study those objects which

satisfy similar properties and that is where vector spaces come from.
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Let us now give a formal definition of a vector space. So, definition of a vector space. A vector
space is a set with two such operations which satisfy a few properties. Let us list all the
properties down. Vector space, let us denote it by V, V is a set with two operations which are
called say vector, they are called vector addition and scalar multiplication which satisfy the,
ok. The vector addition and scalar multiplication they satisfy certain properties such that.......
Let us just see what addition satisfies, given two elements v1 and v2 in V, their vector addition
is also an element of V. The vector addition vl + v2 is an element of V. We also say, the
alternate way of saying this is that V is closed under addition. Let me just write it down in
bracket i. e., V is closed under vector addition.

And similarly, the scalar multiplication, so given a scalar and a vector, we can talk about scalar
multiplication and the scalar multiplication is also similarly closed... sorry... the set V is closed
under the operation of scalar multiplication. Let me just write it down: given a scalar, recall
that the scalar multiplication involved multiplication of element by a scalar. Right? Given
scalar a and a vector and an element let me write elt in short for element, v in V, scalar
multiplication av gives an element in V. Or in other words, V is closed under scalar

multiplication.
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So, we start with a vector space as a set with these two operations, such that these conditions
of the space being closed under these operations are satisfied and such that the following
properties are satisfied. The following properties are satisfied. Let us see, let us go back to our

example.
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So in the example of R2 we defined vector addition and we also defined a scalar multiplication
even though we know already, we did not define it, we used the existing knowledge and what
we would like to see what are the properties that are satisfied by these two operations in R2.
The first operation, the first property is that the order in which you look at.... Let us focus on

vector addition temporarily. The order in which we add two elements in R2, again, it does not



matter. If you add say (1, 2) to (2, 3), and if you add (2, 3) to (1, 2) it should be the same. Right?

That is one property which we would like to generalize.
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Property one: let me just write it as one here or maybe let me write property one. For v1 and
v2 in V, vl + v2 is equal to v2 + v1. That is one of the properties which we would like to
generalize. The second property is again associativity. This is called Commutativity. Next is
what is called as Associativity. If you take three elements, v1, v2, v3 in V and you look at v1
+v2 + v3, which one we add first should not matter. Given v1, v2, v3inV, v1 + v2 if you add
them first and then add it to say v3, this should not affect what the answer is when compared

to say adding v2 and v3 first and then adding it to v1. This is what is called as associativity.
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Property three is the existence of a vector like (0, 0) in R2. If you look at our example, any
vector, say (2, 5) if you add it to say (0, 0), then you are going to get back (2, 5) itself. Right?
And this is satisfied for any element in R2. We would like our vector space to always have one
such element. So there exists an element 0 in V such that v + 0 is equal to v forall vin V. 0 is
called the zero-vector. This is called, the property is called additive identity, existence of

additive identity.

Not just (0,0), R2 has some very nice property that given a vector say (5, 6) if you look at (-5,-
6), and if you add it to (5, 6) we get back our zero element or (0,0). This is satisfied for every
element in R2. Property four demands that... This is a desirable property which we would like

to generalize and property four captures exactly that. Given v in capital W, there exists some



w... sorry, V, there exists a w in capital V such that v + w is the zero-vector. This is what is

known as the existence of the additive inverse. Alright.

Those are the properties which we would like to generalize when it comes to the addition
operation. We have not talked about the scalar (multiplication) operation at all. Right? Scalar
multiplication operation. The next few properties will capture what are the desirable properties

of scalar multiplications which we would like an arbitrary vector space to satisfy.
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The first one is the existence of a multiplicative identity. For every vector v, every v in V, every
element v in V, 1 times v is equal to v where 1 is the scalar multiplicative identity. So, if you
take the number 1, if you take the scalar 1 and if you multiply to the vector v, it should always

give you back the vector. This is the existence of multiplicative identity.... this property.

Next is the property which captures that the multiplication scalar multiplication is also an
associative property, the order in which we look at the scalar multiplication does not matter.
So for example, if you take say (2, 3) and you look at 2 times (2, 3) that is (4, 6), and if you
then look at 3 times (4, 6), it is (12, 18). Right? But if you started off with (2 3), and if you
multiplied 6 to it, 6 times (2, 3) is just (12, 18) directly. The order... whether we did 2 times the
(2, 3) and then 3 times the resulting vector, or we directly multiplied the scalars here and then
multiplied it to the scalar multiplications the vector it did not matter. The result remained the
same. That is precisely what this property tells. Given scalars a, b and an element v in V, let us
look at av and then b on av. That means scalar multiplication of a to v and then this scalar

multiplication of b to the element av in V. Remember that av is an element in V. Right? This



is nothing but... this has to be necessarily, first look at the products of the scalar ab and then do
this scalar multiplication of that to our given vector v, this will be the same. Multiplication is
associative... scalar multiplication is associative. Sometimes, the word scalar is dropped but it
is important to keep in mind that we have two operations and only two operations; one is vector

addition and another is multiplication of a scalar to an element or a vector.

Why is it called a vector addition? We will come to that. The elements of a vector space will
be called vectors. We have however not finished (defining) what a vector space is. So, what

other properties we would like to have in a vector space?
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The next property is that the scalar multiplication interacts with the vector addition. This is

called the distributivity property, so given scalar a and v1, v2 in V, the scalar multiplication of



v1 + v2 this is the same as the scalar multiplication of a to v1 and then we add it to the scalar
multiplication of a to v2. Say, for example, take (1, 0) and (0,1) and look at (1, 0) + (0,1) and
itis (1,1). And if you look at 2 times (1, 1) we get (2, 2). But rather you look at 2 times (1, 0)
and 2 times (0, 1) we get (2, 0) and (0, 2) and if you add them we again get (2, 2). This property
says that..... this is the exact property which we just talked about, should generalize to any
arbitrary vector space which we would like to define. Okay, so this is a property which is called

distributivity.

And finally, the final property states that our multiplication is linear. So, given scalars a and b
and let v be in V, then a + b times v is equal to av+bv this multiplication is linear. So, what is
this property telling us? So, observe that the one | am circling in green is addition of scalars
and the one | am circling in blue is the addition of 2 elements in V. This is a vector addition.
Even though we are using the same notation +, the abuse of notation is not going to create any
confusion as can be observed from the context. What this says is that suppose you do the
addition operation first in the scalars and then multiply it to the vector, or you first multiply it
to our vector and then do the vector addition, the answer should be the same. Notice that this

is a property which is satisfied in both R2 and R3.

All right, so these are all the properties that our vector addition and scalar multiplication should

satisfy. Let us just quickly go over what we have just written down. What is a vector space?
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As you can see, it is quite a long definition. So what is a vector space? A vector space is a set

V which has two operations a vector addition and a scalar multiplication. The vector addition



is such that if you take two elements in the set V, if you add it, you get back an element in V.
The scalar multiplication is such that if you get a scalar and if you get a vector, if you get an
element v in the set V, then the scalar times the element should give you back an element in
the set V itself. So that is how.... that is what is described as saying that V is closed under the

vector addition and scalar multiplication.
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That is not enough, the operations vector addition and scalar multiplication satisfy a list of
many properties; commutativity, associativity, existence of additive identity, existence of an
additive inverse, existence of multiplicative identity, that multiplication is associative, scalar

multiplication and the vector addition distributes over scalar multiplication and that the scalar
multiplication is linear. All the eight properties are to be satisfied by these two operations. If

we have two operations such that all this is satisfied, then we say that V is a vector space.



