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Hello, welcome to this course on Linear algebra. My name is Pranav, I am from Kerala School 

of mathematics. This is a 12 week course and a detailed description of this course can be found 

in the website of the course. The textbooks we will be following is called, the primary textbook 

that we will be following is called Linear algebra. It is by Friedberg Insel and Spence. Let me 

just note it down. 
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Primary textbook is called Linear algebra by Friedberg, Insel and Spence. This is a very 

classical subject. There are many beautiful textbooks written on the subject of linear algebra. I 

would also refer you to another book which is called Linear algebra done right, by Sheldon 

Axler. This is also a very elegant book.  We will be focusing quite a lot on giving rigorous 

proofs and solving many problems. We will have a problem session every week and this will 

be supplemented by weekly assignments. So, you will be, you are very strongly encouraged to 

work on the assignment problems on your own. Solving problems is the most effective way to 

understand the concepts and the theory that we have developed including theorems that we 

prove in much greater depth. 
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Alright, so that is all I have to say to introduce this course to you. Let us begin the study of 

linear algebra. Let us start by recalling the concept of scalars. In high school when we do 

physics, when we do Newtonian mechanics, a scalar is a terminology which is used to describe 

anything which can be described by a number. For example, the mass of an object or the speed 

at which a car is going or the distance somebody has walked and so on. So, a scalar very 

informally speaking is something which can be described by just a number. By a scalar in this 

course, we will just mean a real number, by a scalar we mean a real number. 

We are all familiar with real numbers. Given two scalars, we know that we can add them and 

obtain a new scalar. You could also multiply them and get back another scalar. If say 2 and 3 

is given, we know that 2 + 3 is equal to 5 a real number. 2 times 3 for example is 6 (which) is 

also a real number. We know that given two scalars or two real numbers a, b we can add and 

multiply them to obtain another real number. I will maybe say it separately. We can add them 

to obtain another real number. We can also say multiply them to get another real number. These 

are operations which we are very familiar with. Been using these operations for a long time 

now. What are the properties of addition and subtraction that we are quite familiar with? Let 

us just quickly note down some of these properties. 
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These operations: addition and multiplication operation, they satisfy a few properties. The 

operations satisfy the following properties. Given say a, b,  a + b is equal to b + a. The order in 

which we add does not matter. If we add say 2 + 3, we get 5. If we add 3 + 2, it also gives us 

the same number 5. Similar is the case with multiplication: you multiply say 5 and 10 you get 

50, and 10 and 5 if you multiply, again it is 50. These operations, they commute: the order in 

which the addition or the multiplication is done is not important.  

Another property that we are familiar with is that if we take three scalars, say a, b, c are scalars, 

let us look at a + b + c. Now the question arises about whether a + b is added first or whether 

b + c is added first and then added to the other. This property tells us that the order in which 

we do (addition) is irrelevant, does not matter. The addition is called, what is called as 

Associative. And similar is the case with our multiplication. The order in which we multiply 

the three scalars is not important.  

We also know that there is a 0 real number right? There is a real number called 0 which is very 

special. If you add any number to it you get back the same number. If you add say 3 to 0, we 

get back 3. So there exists 0 such that a + 0 is equal to a for every scalar a. We also have that 

given any scalar a, if you multiply it to 1, we get back a (correction). So just like 0 behaves for 

addition, 1 behaves as an identity for multiplication. So, there exists 1 such that a times 1 is 

equal to a for every scalar a. 
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And we have more, given any scalar a we know that -a (exists). If 2 is given, we know that -2 

is an additive inverse. If you add -2 to 2 we get back 0 right? There exists an inverse so let me 

write it as additive inverse. (There exists) b such that a + b is equal to 0 right. Similarly, given 

any non-zero scalar we have a multiplicative inverse. Given any non-zero scalar a, 1 by a times 

a (is equal to) a times 1 by a is equal to 1, right? If you consider 2, 1 by 2 is the multiplicative 

inverse of 2. Similarly b is this -a (above). So I could have just written it that way, it is ok does 

not matter. Every element will have both additive inverse and multiplicative inverse.  
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And the addition and the multiplication operation are not standing apart, they interact with each 

other. So given scalars a, b, c, a times b + c is equal to ab + ac. We have summarized some of 



the very common properties of real numbers we are quite familiar with. We know a lot more 

about real numbers, but let me just single out these properties because these are the properties 

of real numbers we will be using, properties of the scalars that we will be using in this course. 

The collection or the set of all scalars is called the field of scalars. I will not write it in capitals, 

just underline it, (and is) called the field of scalars. It is sometimes denoted, sometimes denoted 

by F. In this course, our field of scalars will always be Real Numbers most of the time. 
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In this course our field of scalars is field is the set of Real Numbers, most of the time. Real 

Numbers are denoted by R. Alright. Let us now jump into the definition of what a vector space 

is. So what is a vector space? 
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Let us discuss some vector spaces which are quite familiar and then we will give a formal 

definition. The next topic or the first topic rather is vector spaces. Let us start with something 

very familiar, something which we are all quite familiar with. Consider the Cartesian product 

R2 from coordinate geometry. What is this? This is just the set of all (x, y) such that both x and 

y are in R. They are ordered tuples (x, y) where each of the coordinates are real numbers. The 

order matters. So for example (2, 3) they are ordered tuples. Remember that. (2, 3) is different 

from (3, 2). Right? And we are also quite familiar with the notion of adding 2 elements in R2. 

So if say (1, 0) and (3, 4) is given to you, we know that we can write this as (4, 4). Right? We 

are also familiar with the notion of multiplying scalar to vector in R2. 

So given say for 3 or 2 times, let us put something here 3.5 and 2, this we know is equal to 7 

and 4. From coordinate geometry we know that we can do these operations on the space R2. 

Right? 
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We also have considered one more space R3, in physics many times. This has been dealt with. 

This is the Cartesian product of Real Numbers with itself 3 times. This again is an ordered tuple 

where all x y z are in R. They are all real numbers so again ordered tuples. The order in which 

we are considering matters. And in a very similar manner, we have defined addition in R3. So, 

say (2, 3, 1) is added to (5, 6, 4) what was the answer? This will be just (7, 9, 5). Right? We 

know that it is taken component-wise and added. If you multiply four times (1,0,1) we know 

that this is (4,0,4). Again this is done component wise. These are operations which we are 

already familiar with, from our high school physics for example. R3 for example was used to 

describe the components of say the velocity or the acceleration for that matter. And when we 

add two velocity vectors, we just added it in this manner: x component, y component, z 

component and so on. All right. 
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These two examples and the operations therein satisfy certain properties. Notice one thing 

before we go ahead. The addition here, that is being described, for example, this one is for two 

vectors in R2 and this one is for two vectors in R3. We cannot take a vector in, an element in 

R2 and an element in R3 and add. Right? It does not make sense to add an element in R2 to an 

element in R3. Right? So, these operations of say, addition and multiplication by a scalar, they 

satisfy certain nice properties. Or let me put it in a different manner: there are certain properties 

which are satisfied by these operations, which are of great interest to us, which has the potential 

to abstractify. It can be put in a more general setting and we could study those objects which 

satisfy similar properties and that is where vector spaces come from.  
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Let us now give a formal definition of a vector space. So, definition of a vector space. A vector 

space is a set with two such operations which satisfy a few properties. Let us list all the 

properties down. Vector space, let us denote it by V, V is a set with two operations which are 

called say vector, they are called vector addition and scalar multiplication which satisfy the, 

ok. The vector addition and scalar multiplication they satisfy certain properties such that....... 

Let us just see what addition satisfies, given two elements v1 and v2 in V, their vector addition 

is also an element of V. The vector addition v1 + v2 is an element of V. We also say, the 

alternate way of saying this is that V is closed under addition. Let me just write it down in 

bracket i. e., V is closed under vector addition. 

And similarly, the scalar multiplication, so given a scalar and a vector, we can talk about scalar 

multiplication and the scalar multiplication is also similarly closed... sorry... the set V is closed 

under the operation of scalar multiplication. Let me just write it down: given a scalar, recall 

that the scalar multiplication involved multiplication of element by a scalar. Right? Given 

scalar a and a vector and an element let me write elt in short for element, v in V,  scalar 

multiplication av gives an element in V. Or in other words, V is closed under scalar 

multiplication. 
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So, we start with a vector space as a set with these two operations, such that these conditions 

of the space being closed under these operations are satisfied and such that the following 

properties are satisfied. The following properties are satisfied. Let us see, let us go back to our 

example. 

(Refer Slide Time 20:14)  

 

So in the example of R2 we defined vector addition and we also defined a scalar multiplication 

even though we know already, we did not define it, we used the existing knowledge and what 

we would like to see what are the properties that are satisfied by these two operations in R2. 

The first operation, the first property is that the order in which you look at.... Let us focus on 

vector addition temporarily. The order in which we add two elements in R2, again, it does not 



matter. If you add say (1, 2) to (2, 3), and if you add (2, 3) to (1, 2) it should be the same. Right? 

That is one property which we would like to generalize. 
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Property one: let me just write it as one here or maybe let me write property one. For v1 and 

v2 in V, v1 + v2 is equal to v2 + v1. That is one of the properties which we would like to 

generalize. The second property is again associativity. This is called Commutativity. Next is 

what is called as Associativity. If you take three elements, v1, v2, v3 in V and you look at v1 

+ v2 + v3, which one we add first should not matter. Given v1, v2, v3 in V, v1 + v2 if you add 

them first and then add it to say v3, this should not affect what the answer is when compared 

to say adding v2 and v3 first and then adding it to v1. This is what is called as associativity. 
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Property three is the existence of a vector like (0, 0) in R2. If you look at our example, any 

vector, say (2, 5) if you add it to say (0, 0), then you are going to get back (2, 5) itself. Right? 

And this is satisfied for any element in R2. We would like our vector space to always have one 

such element. So there exists an element 0 in V such that v + 0 is equal to v for all v in V. 0 is 

called the zero-vector. This is called, the property is called additive identity, existence of 

additive identity.  

Not just (0,0), R2 has some very nice property that given a vector say (5, 6) if you look at (-5,-

6), and if you add it to (5, 6) we get back our zero element or (0,0). This is satisfied for every 

element in R2. Property four demands that... This is a desirable property which we would like 

to generalize and property four captures exactly that. Given v in capital W, there exists some 



w... sorry, V, there exists a w in capital V such that v + w is the zero-vector. This is what is 

known as the existence of the additive inverse. Alright.  

Those are the properties which we would like to generalize when it comes to the addition 

operation. We have not talked about the scalar (multiplication) operation at all. Right? Scalar 

multiplication operation. The next few properties will capture what are the desirable properties 

of scalar multiplications which we would like an arbitrary vector space to satisfy. 

(Refer Slide Time 25:15)  

 

The first one is the existence of a multiplicative identity. For every vector v, every v in V, every 

element v in V, 1 times v is equal to v where 1 is the scalar multiplicative identity. So, if you 

take the number 1, if you take the scalar 1 and if you multiply to the vector v, it should always 

give you back the vector. This is the existence of multiplicative identity.... this property.  

Next is the property which captures that the multiplication scalar multiplication is also an 

associative property, the order in which we look at the scalar multiplication does not matter. 

So for example, if you take say (2, 3) and you look at 2 times (2, 3) that is (4, 6), and if you 

then look at 3 times (4, 6), it is (12, 18). Right? But if you started off with (2 3), and if you 

multiplied 6 to it, 6 times (2, 3) is just (12, 18) directly. The order... whether we did 2 times the 

(2, 3) and then 3 times the resulting vector, or we directly multiplied the scalars here and then 

multiplied it to the scalar multiplications the vector it did not matter. The result remained the 

same. That is precisely what this property tells. Given scalars a, b and an element v in V, let us 

look at av and then b on av. That means scalar multiplication of a to v and then this scalar 

multiplication of b to the element av in V. Remember that av is an element in V. Right? This 



is nothing but... this has to be necessarily, first look at the products of the scalar ab and then do 

this scalar multiplication of that to our given vector v, this will be the same. Multiplication is 

associative... scalar multiplication is associative. Sometimes, the word scalar is dropped but it 

is important to keep in mind that we have two operations and only two operations; one is vector 

addition and another is multiplication of a scalar to an element or a vector. 

Why is it called a vector addition? We will come to that. The elements of a vector space will 

be called vectors. We have however not finished (defining) what a vector space is. So, what 

other properties we would like to have in a vector space? 
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The next property is that the scalar multiplication interacts with the vector addition. This is 

called the distributivity property, so given scalar a and v1, v2 in V, the scalar multiplication of 



v1 + v2 this is the same as the scalar multiplication of a to v1 and then we add it to the scalar 

multiplication of a to v2. Say, for example, take (1, 0) and (0,1) and look at (1, 0) + (0,1) and 

it is (1,1). And if you look at 2 times (1, 1) we get (2, 2). But rather you look at 2 times (1, 0) 

and 2 times (0, 1) we get (2, 0) and (0, 2) and if you add them we again get (2, 2). This property 

says that..... this is the exact property which we just talked about, should generalize to any 

arbitrary vector space which we would like to define. Okay, so this is a property which is called 

distributivity. 

And finally, the final property states that our multiplication is linear. So, given scalars a and b 

and let v be in V, then a + b times v is equal to av+bv this multiplication is linear. So, what is 

this property telling us? So, observe that the one I am circling in green is addition of scalars 

and the one I am circling in blue is the addition of 2 elements in V. This is a vector addition. 

Even though we are using the same notation +, the abuse of notation is not going to create any 

confusion as can be observed from the context. What this says is that suppose you do the 

addition operation first in the scalars and then multiply it to the vector, or you first multiply it 

to our vector and then do the vector addition, the answer should be the same. Notice that this 

is a property which is satisfied in both R2 and R3. 

All right, so these are all the properties that our vector addition and scalar multiplication should 

satisfy. Let us just quickly go over what we have just written down. What is a vector space? 
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As you can see, it is quite a long definition. So what is a vector space? A vector space is a set 

V which has two operations a vector addition and a scalar multiplication. The vector addition 



is such that if you take two elements in the set V, if you add it, you get back an element in V. 

The scalar multiplication is such that if you get a scalar and if you get a vector, if you get an 

element v in the set V, then the scalar times the element should give you back an element in 

the set V itself. So that is how.... that is what is described as saying that V is closed under the 

vector addition and scalar multiplication. 
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That is not enough, the operations vector addition and scalar multiplication satisfy a list of 

many properties; commutativity, associativity, existence of additive identity, existence of an 

additive inverse, existence of multiplicative identity, that multiplication is associative, scalar 

multiplication and the vector addition distributes over scalar multiplication and that the scalar 

multiplication is linear. All the eight properties are to be satisfied by these two operations. If 

we have two operations such that all this is satisfied, then we say that V is a vector space. 

 


