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Welcome. In the last lecture, we have studied semi-linear equation, semi-linear evolution

problem. And there, we have stated one theorem, saying that if the additive function is

continuous in time and uniformly Lipschitz in the second variable or space variable, okay

then, and also the operator A is infinitesimal generator of C0 semigroup. Then, for any initial

point from the Banach space, one can get one mild solution, okay.

It has a unique mild solution and moreover that, the dependence on the mild solution, on the

initial data, the dependence is Lipschitz, so it has Lipschitz dependence. Okay so this

theorem, we have seen in detail. So, we have seen the proof in details.



(Refer Slide Time: 01:24)

Now when this is done, we ask the next level question, that what about the classical solution?

Okay, for all other earlier problems like (you know) initial value problem, homogeneous

initial value problem, inhomogeneous initial value problem or even the evolution problem,

homogeneous and inhomogeneous evolution problems.

So, for those, we did not need to ask the question that whether the mild solution exists,

because we used to write down, we actually have written down the mild solution formula,

provided the operator A has sufficient stability. I mean in the sense that okay that generates a

either a semi-group, C0 semigroup or it generates a evolution system, okay.

So, only, I mean immediately after obtaining an evolution system or a semi-group, we could

write down the mild solution for those problems. But here, when we are discussing semilinear

evolution problem, then even after obtaining the semi-group, generated by the operator A,

since the data, your data is non-linear, one needs more property on the data, how it depends

on the space variable.

So, and then this, I mean if that is Lipschitz, then only we can ensure existence of a mild

solution. Here, the mild solution does not have any expression. Rather, we write down mild

solution of the equation, of the original problem as solution of an integral equation, okay.

So, the question arises, that when the integral equation has a solution. So, that was the reason

of discussing this. Okay, but however the question what we generally ask for every Cauchy



problem whether it has a classical solution or in other words, what are the sufficient

conditions on the operator initial data and additive terms, so that one can assert that the

problem has a classical solution?

So, here, for this problem, this regularity theorem asserts that. So, let A be the infinitesimal

generator of C0 semigroup on X and additive term f is continuously differentiable. So, this f

is a function of 2 variables time variable and space variable.

So, here so, we have assumed f is continuously differentiable. So, it is in line of the

assumptions what we have made for IIVP. So, there, we have stated couple of sufficient

conditions for existence of classical solution. There also we have taken the additive term to

be C1, okay, in one of those theorems.

And also we must take the initial data coming from the domain or definition of A. So, x

belongs to DA. Okay, so we have taken these assumptions in the line of earlier theorems, for

some special cases. So here, one must be careful, that okay this is C1 in with respect to this, it

is the function of 2 variables. Correct? Not only only time to X, but time and space together.

Okay so differentiability in that sense. Okay, so the mild solution is a classical solution.

Okay? Second assertion is that, first assertion is that okay. So, it has a classical solution and

then the classical solution whatever we write, coincides with the mild solution, okay, fine. Or

in other words, basically one can say that the mild solution becomes the classical solution.

Or in other words, the mild solution gains sufficient regularity that it belongs to the domain

of definition of the operators, I mean whichever which appear in the equation. Okay, so, that

is all about the Regularity theorem. We have stated similar theorems for earlier problems. So,

for this semi-linear problem, this is the statement.

There are some other alternative, you know theorems, with some other type of sufficient

conditions. And then, after stating those, we would prove these, you know regularity theorem,

this point, this statement we are going to prove in details. Okay so, let us see some other, I

mean this type of statements.

If A is the infinitesimal generator of a C0 semigroup Tt on a reflexive Banach space, capital

X. So, here we are assuming lot to the space X, okay. So, then we may need to assume less on



the additive term f. So, here we are not requiring that to be differentiable, but only Lipschitz.

So, Lipschitz function on the, on these 2 variables time and space variables, okay.

So, then for each x in DA the domain of operator, the mild solution is a classical solution to

the semilinear evolution problem, SEP, okay. So, let us recall what is the SEP, the full

expression which appears here.

(Refer Slide Time: 07:12)

So, this is SEP, d phi dt is equal to A phi t plus f of t phi t. So, here, the dependence of f on

phi need not be linear. So, that is the reason we call this semilinear evolution problem, okay.
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Next, before going to the proof of this Regularity theorem, we make some comments. The

conditions in our 2 results do not ensure uniqueness, do not ensure uniqueness of classical

solution to SEP.

However, some further stronger condition is required. So, that ensures the uniqueness. So,

this is one of the sufficient conditions. So, let f is a map from, you know, so, this is an

additive term, for time and space, but here in space instead of x, we put capital Y. So, assume

that if you restrict f to the time domain and then then instead of whole Banach space just

restrict to the subspace Y, where Y is a domain of differential of the operator A.

So, then the range is, the range is also in Y okay. And then this map is uniformly Lipschitz in

Y. So, here this is uniformly Lipschitz in Y. When we say that, that means that to get the

Lipschitz property, we would consider the norm, which is endowed I mean which is given in

Y, okay. So, Y is endowed with a graph norm. Correct? So, with that, we need to have this f

to be uniformly Lipschitz, in Y, okay.

Uniformly Lipschitz, that means that, I mean the Lipschitz constant does not depend on time,

okay. One can get a Lipschitz constant which does not depend on time. And pointwise

continuous in time variable t so with respect to time variable, it is continuous, so second

variable is Lipschitz.

But here, we are putting much smaller subsets and some other different norm. So in under

this condition, if x is in a domain of A, okay and A ofcourse generates C0 all those things are

as before, okay. So, then this semilinear evolution problem has a unique classical solution in

the interval, smallest to capital T in that total duration. Okay. So, next we go to the proof of

the Regularity theorem.

So, we are going to prove this theorem, okay. So, here, the main idea of the proof is that since

f is given this way, okay, so, we would use the earlier theorem which ensures the existence of

a mild solution. So, given these conditions, we would first ensure that it has a mild solution.

And then we are going to show that the mild solution has sufficient regularity, okay. So, that

is the main idea. So, it has many steps. We would go step by step.



(Refer Slide Time: 10:33)

So, as f is in C1, okay, f is continuous. Correct? So, here we are assuming it is continuously

differentiable. So, it is indeed continuous. And since it is C1 here, okay, so that means it is

differentiable. And the derivative if we consider the derivative, okay so, the derivative, okay.

So, that is on the time domain, okay.

And then we are going to get the Lipschitz continuous in space uniformly on s to capital T.

Since this differentiable so derivative we are going to get, but that derivative may depend on

time. But that time varies on a compact set. So and because the continuous derivative, with



the continuity of derivative, we would get the derivative would be bound there. So, we would

the derivative, okay.

So, that (function) I mean that the Lipschitz constant, whatever I am going to get would be

upper bounded by a fixed constant. So, you get Lipschitz uniformly on the interval s to

capital T. So, then we can apply the theorem, which asserts that the SEP has a unique mild

solution. So, SEP has a unique mild solution and we call that mild solution as phi, okay so, it

is actually  varphi. So phi which is itself a continuous function of time.

So, it is actually path, a continuous path okay, on the Banach space capital X. Okay so next,

we need to show that the phi is continuously differentiable okay that means, you know in the

equation, phi appears on both sides, left-hand side d phi dt appears. So, that should be

meaningful, classically, correct, so d phi dt should exist.

So, phi we are going to show that it is continuously differentiable. So, we recall the definition

of phi. So, phi of t is, this is the integral equation, which the mild solution must satisfy. So,

phi of t is equal to capital T of t minus s x. x is the initial point, capital T is a semi-group

generated by the operator A. So, phi t is equal to T of t minus s x, plus integration small s to t,

capital T of t minus r f of r comma phi r dr, okay.

And then, we consider the Frechet derivative okay so, this Frechet derivative is the derivative

of f with respect the second variable. So, B s comma v is defined as del, del v of f s, v. Okay.

So, this thing belongs to BL X, okay. So, that is the meaning of derivative here, because a

derivative of these functions with respect to the Banach space value function if I am in the

Banach space.

So, here the derivative with respect to v would be a bounded linear map from the space to

space itself. So, that is a derivative. And we can write down this, because it is already given

that f is in C1. So, that means this derivative exists. So, we can do that. We also define g or

another function g of t, which is defined as capital T of t minus s f of s phi s plus A

composition of capital T of t minus s. This is semi-group, this is a generator. x plus

integration small s to t, capital T of t minus r, del, del t f r phi r dr.

So, what it means that means del, del t f of something is basically the partial derivative of f

with respect to the first variable, okay. Whenever I want to get the derivative with respect to



second variable, we write down del, del v. Whenever we would like to write down the

derivative of f with respect to the first variable, we write down del, del t.

So, this is the form of gt. It is not now yet clear why do I need to consider such complicated,

long expression, function. Yes, so actually this appears. This was, this appears in the proof.

And intuitively I can say that okay, when we are going to take derivatives you know some

terms would arise. You understand that if you take derivatives of this, you know the A terms

appear.

So, this term basically appears you know as you know terms which arises after taking the

derivative. You see the derivative also appears here. Okay, this is gt. So, we at least know

from the expression, that g is continuous path okay so it is a continuous function of time t.

Why is it so? Because this this as a function of t, this is T t of something, okay some constant.

So, T t is is C0 semi-group. So, this is continuous in t.

Here, for the same reason, that since x is coming from the domain of definition of f. So, T t,

so this is in the domain of definition of s. So, this makes sense. And since, T t is C0

semi-group, so this is continuous. So, A T t minus s x is same as T t s, T t minus s A x. So

from that we are going to get this continuous in t. So, here, what we need just the integrability

of the inside term to get the continuity of t.

And that is true, because here since f is in C1 and then on the close interval it is continuous

also. So, the derivative is also continuous on closed interval. So this is bounded during that

interval. So this would be, you know more locally integrable or basically it is integrable also.

So, we are going to get this thing, okay. So that asserts that g would be continuous.

Okay, so now what we have, we have this B notation, okay. So, that we have which this is

nothing, but a member or the member in the BL X and then g t. And now, we are studying the

property here. So, r goes to B r phi r. So, phi is this okay, phi of r is a point in the Banach

space.  So, as the function of r and the first variable is r here.

So, now we are studying this map r to B r phi r. So, this map is also continuous map, okay.

Why is it so? Because of this, you know C1 function. So, this derivative is continuous. So,



due to that and since phi is also continuous, so it is composition of these 2 maps. So, this is

continuous, okay? So, r to B r phi r, so this this map is continuous, okay.

So, this is continuous and then we consider this map t comma v to B t phi t v. Because B, B is

okay this whole thing is a member in the BL X. So, this if you apply to a member in the

Banach space X then you get a point in the Banach space X. Okay, so, here if you apply that

to v, you get some point there.

So, now if you choose an arbitrary a small t in this interval and an arbitrary of small v in the

Banach space. And then you consider B t phi t v okay so this as a function of time t and v

okay, so this is also continuous in t and uniformly Lipschitz in v. uniformly Lipschitz in v is

trivial because this is actually linear in v. Correct?

And then, this changes with respect to time, but this changes continuously so as stated here.

And on the compact set, we are considering here. So, the norm of this linear operator it can

be upper bounded by a fixed constant. So, that would give me uniformly bounded. So, this is

family of linear operators, which is uniformly bounded. So, that would give me that uniform

Lipschitz property also.  So, this is uniformly Lipschitz in v.

Now next, so what we do is that we write, introduce another function. So, here at this stage, I

understand that I am not giving much motivation, why am I using these (you know)

introducing these new-new operators and functions, say B, g and now we are introducing w

also. But that would be clear, when we go to the details of the proof.

So, let w t be the solution to the following, you know integral equation, w t is equal to g t, g

as earlier defined. So, g is defined here. So, it has 1, 2, 3 additive terms, 3 additive terms.

And then, we have w t is equal to g t plus integration small s to t, capital T of t minus r, B r

phi w r dr. So, w appears both sides. So, this unknown appears both sides. So, this is

basically an equation.

So, consider this equation, this another integral equation, okay. And assume that w be the

solution to the following integral equation. Okay so, then then the proof of existence of

uniqueness of w okay, so basically existence and uniqueness of the solution of this equation is

very much same as the existence and uniqueness theorem of the mild solution, okay.



So there we had the different term here T t minus s x, something like that. And here, we did

not have B, but some f terms were there. But what I can write down this whole thing as you

know we can treat this as, this part as f, okay and you can check that whether the conditions

in the theorem is satisfied by the condition here.

Here, that is so, okay so then we can assert that; the existence and uniqueness. Okay, so this

is true, because the conditions which just we have expressed here, that the Lipschitz

continuity in the v variable, okay. So, as a function here, so for mild solution, this is the form.

And then in the equation, new equation w, there instead of this, we get g t. And instead of f,

we get this B these things. Correct?

So, here, B r phi r w r. Okay, so, here it is not semi-linear operator; this is a linear operator.

Okay, so here we are using proof of earlier theorem the sufficient conditions for the

applicability of the theorem is true for this case also. So, we can apply that to obtain that this

has a unique continuous solution.

Okay, so w t exists. So, why am I talking all this? Because, just to ensure that w t exists okay.

Such, you know there is a continuous function w t okay, which satisfies this. And now, we

consider f of r comma phi r plus h minus f r comma phi r. Okay, so this increment.

So, this increment, if we would like to apply the differentiability property of f here, we would

be able to get that this difference of you know this this second variable increment is equal to

B of r comma phi r, the derivative, okay and the point phi r. So, this left hand point here. And

then, multiplication with this difference phi r plus h minus phi r plus some other, I mean error

term w 1 r h.

As h tends to 0, this 1 over is w 1 must go to 0. Correct? I mean that is, I mean that is implied

by the differentiability of f with respect to the second variable. Okay, so this is the notation

basically I would like to introduce the w 1 here, error term here. Okay so, next we consider

the increment to the first variable here, the difference here.

Second variable looks as it is. So, first variable is f of r plus h phi r plus h minus f of r comma

phi r plus h is equal to del, del t. So, now since it is increment with respect to first variable

and f is you know differentiable, continuously differentiable. So, I would be able to write



down this difference, using the derivative with respect to the first variable. So, we write down

del, del t of f of r comma  phi r plus h, okay times h, h is the increment here.

This is r, r plus h, so h is the increment plus say another error term w 2 r h, so only one thing

we know about this term is that, 1 over h of w i this goes to 0. Correct? So, 1 over h, norm w i

h, okay so that goes to 0 as h goes to 0, okay, uniformly on this. Okay so next, what we do is

that, we aim to show that phi is differentiable. Okay?

So, that is our main goal that phi is differentiable. And the derivative is w, okay. So, now it is

clear, that why am I introducing these notations like g, B, w, etc. See I mean, phi I would like

to show that it is differentiable, that then the derivative is also very relevant and important

thing.

And there, that the derivative of phi okay, we are going to show that is w. And to write down

w, I will need to write down this integral equation. And this integral equation involves g and

the operator B, okay. So, that was the main reason to introduce this function g and B just to

get the w, okay.

Now consider this w h t, this is also another error term, so, 1 over h phi of t plus h minus phi

of t minus w t, okay. So, we need to show that this error term goes to 0, okay. If I can show

that this error term goes to 0, as h tends to 0, then we would be able to justify that phi is

differentiable and the derivative is w, right? We would be able to assert both the things, okay.

If we just prove that w h is equal to or goes to 0 okay, in the subsequent slides.


