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Lecture 33
Widder’s result and its extension on heat equation

Okay, in earlier lectures, we have seen heat equations, solution in terms of conditional

expectation.
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So, here we recall very quickly that if f is the initial data and then the expectation of f of Wt

given W0 is equal to x, this conditional expectation gives a particular function of x, correct?

Where W is a Brownian motion and that function of x if you write down u of t comma x, because

this also is a function of t. So, u of t comma x, then this function solves the heat equation.

So, we have seen that and then what we are going to now ask a very straightforward question

that, if my initial data is non negative that f is greater than or equal to 0, then from this

representation it is evident that u should also be non negative, why? Because it is after all

expectation of a non negative function of a random variable. So, whatever Wt value is positive or

negative does not matter f of Wt, would always be non-negative and then you are taking

exception, that is nothing but an average.

So, this is greater or equal to 0 and what we have seen in earlier lectures that given some kind of

conditions on f. So, like growth condition, that this satisfy the heat equation however, the reverse

thing we have not established, what is the reverse thing? That given the heat equation given a the

heat equation, whether it has a solution I mean whether you can always write down this as in this

form the solution can be written in this form.

So, we are going to ask this question, if we find a non negative u, which solves the heat equation,

that is del u, del t is equal to half into second order derivative of u with respect to the space x. So,

when we talk about multi-dimensional, we write down second order derivative their Laplacian,

correct? Now, if we find a non negative u, which solves the heat equation, does u have above

type of representation? So, this question we are asking here now, and we are going to answer a

affirmatively.

So, this is the Widder’s result. So, Widder’s result is as follows, so let here u be a function on 2

variables, time and space. So, this domain is open interval 0 to capital T and space is whole R

unbounded domain and this u is non-negative. So, its value is 0 or more than 0, so here the

following are equivalent. So, this theorem is saying that the following are equivalent, what are

these? That for some non decreasing function capital F, u of t comma x, this u, u of t comma x is

equal to minus infinity to infinity p of t, x, y and then integrated with respect to capital F of y.



How can we do this? Here, already we have assumed F to be non-negative or non decreasing. So,

non decreasing functions for that we can define the notion of Stieltjes integral. So, this is just

stieltjes integral. And then, here capital F could be any non decreasing function it could be you

know discontinuous function also like this, like this that indicator function of closed 0 to infinity

x, basically heaviside function, that on the positive axis when x is positive or 0, then F is 1, if x is

negative then F x is equal to 0. For such type of functions it is discontinuous you cannot talk

about its derivative, it is not differentiable.

So, this stieltjes integral cannot be further reduced by dF y divided by dy, dy you cannot write on

that way. So, it is little different than this type of expression, where we had u of t, x is equal to

expectation of f of small f of Wt, where you can actually write down small f of y, dy and P t, x, y,

because this expectation here looks exactly like this where the same density appears, where I

mean like this same density appears, but the function here like small I mean, like you can think

this is the anti derivative of small f.

But if small f is already a bounded measurable function, then its anti derivative would be

continuous, but here we do not have that constraint. So, capital F is allowed to be discontinuous

even. So, this is more general than this setting, so here the derivative of capital F can be using the

distributional sense, the distribution sense derivative of capital F is Dirac mass at point 0.

So, now the following statements are equivalent, so here I have just written the statement number

1, so statement number 1, is saying that this non-negative function u is retained, I mean as if just

this solves the PDE heat equation because it looks almost like same, but is more general actually

the antiderivative of small f appears as F.

So, the second condition is that, that it solves the heat equation, is not surprising correct because

of this particular nature, it is natural that, it would solve the heat equation I mean natural I mean

it is not straight forward proof, because we have not proved this for this general generality but

for the special case when capital F has a derivative, then this is exactly this. Then we have

already proved that solves a heat equation.



So, this Widders result says that, okay even with this generality this u, would also solve the heat

equation, because this is u is classical solutions. So, it is once differentiable with respective time

variable and twice differentiable with respect to the space variable C12 and del u, del t is equal to

half del 2 u, del x 2 on this domain.

There is also a third criteria, which is also equivalent to these two, what are these? This is for

each t positive between 0 to capital T and x is real number, u of t minus s, Ws. So, this you can

view that as a stochastic process as s runs from close 0 to open t. I cannot simply put s is equal to

t, I cannot make it closed, why? Because for s is equal to t, this u of t minus t would be 0, u 0.

And for and Wt.

So, now u 0, here if you put t is equal to 0 you do not what would happen here, because here for

u 0, I can write down I know that W 0 is equal to x and it is expression f of W t and t is going to

0 say that okay, f of W 0 but W 0 is constant, so, you can write small f of x directly, but here you

cannot do that simply, why? Because here you do not have exactly this type of expression, here it

is because capital F derivative does not exist, it is this.

So, I may not have u 0 value at 0 I may not have a value, so I cannot have a closed interval t, I

can have only open interval t, however above 0. So, in the term like t is equal to 0 is the

boundary of the cartesian product domain is one part of the boundary, but it is not in the interior.

So, in the interior, we can of course define this function u, because and in the interior u is not

only defined it is continuous, it is differentiable, it is you know it has all the regularity as

required to solve these PDE. And this process as you know s is the time index, when t is fixed,

this is a martingale, this is martingale u of t minus s, Ws is a martingale. So, how are you going

to see this see, for example it is like a backward kind of thing, because here when s is equal to 0,

then is it is actually u of t comma W 0.

So, let us see this, imagine that this is my time axis and this is the space, this is the space right

down this way and at some particular time t your say you are at some point particular point x. So,

this is this coordinate is t comma x and imagine that you are generating one Brownian motion

starting from this point, but not as time forwarding but time backward.



So, this is a Brownian path and then you stop at some point, say here t minus s, so basically this

distance is s, you go s, so here this direction and then where ever you stopped. So, here you find

out this, this value u of t minus s Ws. So, here this coordinate is t minus s and then, what should

be, this height because it started from here a Brownian motion and that Brownian motion here it

took exactly s amount of time.

So, it is Ws here this position W0, Ws, so this point you evaluate the function u, so u of t minus

s Ws. Now, you continue this Brownian motion s you continue and continue doing that for each

and every s, starting from 0. So, here s is 0 starting with this and then, what are you going to get?

You are going to get a stochastic process, because this function although this function is

deterministic, but the path is random.

So, you are going to get a stochastic process and that stochastic process turns out to be a

martingale. It is not clear otherwise because u I mean, W is of course a martingale, but a function

of martingale need not be a martingale like W square is not a martingale. So, u is a function of

this but since u satisfies the heat equation. So, these things becomes, so it is not true for all

possible u. So, it is only special for some particular u and it is just saying that these three are

equivalent.

So, am I clear? Could I emphasize that this third condition also clarify I mean, put some

condition on u. So, here u is written in this way all function u cannot be written in this fashion, u

satisfies this PDE, the all functions does not satisfy this PDE for all u, you may not get the

martingale, but okay these three are equivalent. There is a another fourth statement that u of t

comma x is equal to expectation of u, t minus s, Ws.

So, left hand side does not depend on s, right hand side depends on s, so this is true for all s, so if

I fix one particular s, say s is not allowed to take value t, because if I put t, then u of 0 would

appear, but I do not have that, I do not have from I mean, neither there, u is also define only on

open interval 0 to capital T.

But say u of, if I put s is equal to 0, then I can check what does it mean, what does it mean? That

here the Brownian motion is starting from point x as I should have shown in the picture and then



for s is equal to 0 the W 0 would be not a random variable but a deterministic value that x and u

of t minus 0 is u t. So, here expectation of that would be just u t, because this is deterministic. So,

u t x you are going to get that.

So, left hand side and right hand sides are equal when s is equal to 0 that we can see very easily,

but in general I mean, s is equal to 0 is trivial I mean, that is true for any function u, but in

general for any arbitrary function u you would not get this to be true, because if s is non 0 then it

is not obvious.

So, here this part also we can visualize in this that you fix one particular s and then you simulate

Brownian motion backward direction may be you know a million time. So, another path possibly

here and then evaluate u function at this point, u function is defined on the Cartesian product t

comma s.

So, here so we have drawn this black and red color, these two paths of Brownian motion and

then well there we see that it stopped somewhere I mean, at the point time point s and then if we

generate such type of millions of paths, and then at each and every for each and every path when

it stop somewhere at some points t minus s comma Ws.

So, there we evaluate the function u and we are going to get some particular number, we are

going to get some particular number and we take average of that. And here since our function u

is non negatives we are going to get millions of such non negative numbers and we going to take

average and that average would be an estimator of expectation of u of t minus s comma Ws. And

that value would match with the function u at the point t comma x, which was a starting point of

the Brownian motion.

So, this is the fourth statement of fourth statement that u of t comma x is equal to expectation of

u, t minus s, Ws expectation. So, one can find an estimator of this expectation by taking you

know by simulating W say million times and then finding out that point and then taking average

of those values.
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So, next we come to Widder’s uniqueness theorem, so we are not going to prove this theorem,

we are going to just state this theorem and while stating we are going to you know clarify that

where this is you know different from other earlier theorem. So, here let u be a smooth function

that C 1, 2 function must continuously differentiable with respect to time and twice conscious

differentiability of space, and it is non-negative function and u satisfies the heat equation del u

del t is equal to half del 2 u del x 2.

And here, furthermore that at the initial time if you come close that t tends to 0 and y tends to x u

t of y if you find out and if that value is equal to 0 for, I mean each and every choice of x. Then

the function u should be 0 inside the interior, should be 0 identically. So, in this statement no

growth condition is required on u, remember that Tychonoff theorem we had also another

uniqueness theorem with similar conclusion.

But there we had to assume that u satisfy certain growth condition, that you know of t comma x

into I mean is less than or equal to e to the power of a x square for some positive a. So, here we

do not need such kind of condition, but however we of course require u to be non-negative you

understand that.



So, earlier u was allowed to be positive or negative but should satisfy some growth condition

here, we do not need the growth condition but we need u to be non-negative. So, you understand

that these two theorems are not actually a special case of either of these, but they have different

applicability.

Next let u be again you know the C1, 2 function and del u del t is equal to half del t u, del x 2 and

here instead of 0, I am writing f of x, that u of t y as t tends to 0, y tends to x, u of t, y goes to f of

x, for all x in R. So, if that is the case, then u is equal to minus infinity to infinity f of y, this is

the representation. Then u the solution u has this representation it can be written in terms of

integration of f and integrated using that probability density function p.

Is the only non-negative solution to the problem. So, here we have got the uniqueness that the

solution, it has only one single solution and that solution is written in terms of this. So, this is in

other words the conditional expectation of f of Wt given W0 is equal to x. So, this representation

is there

However, this does not say that the problem has no other classical solution, so here so far non

negative solution we are talking about, but it can have positive, negative like the classical

solution. So, then as I told that, this is not a special case of Tychonoff's theorem these are two

different applicability. So, if you want, I mean if you have these you know bounded the condition

in addition then you can talk about unique solution.


