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Lecture 16
Brownian motion and its martingale property

Today we are going to see one particular example of stochastic process that is Brownian

motion. In earlier lectures we have seen the general type of martingales, semi martingales.

So, those are classes of processes, those include many examples of processes.

Brownian motion is one particular example of a stochastic process that I have actually used

sometimes during my lectures just you know for, for referring to some particular properties or

example, but I have not discussed the full definition and most important properties of

Brownian motion.

So here, I am trying to present the definition of Brownian motion and its important path

properties. So, the aim of this lecture is that we are going to see the definition of Brownian

motion, its martingale property, its path property in the sense of quadratic variation process.

So, these are the things we are going to see today.
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So, let us first recall what is normal random variable. Normal random variable is the building

block for Brownian motion.



So, if X is a normal random variable such that, the PDF, Probability Density Function of X is

given by, I mean this is written f small f subscript capital X of small x, this is a function of

small x, where x is real number, if that is given by 1 over square root of 2 pi times sigma, see,

sigma is outside of the square root. Times e to the power of minus x minus mu whole square

by 2 sigma square.

Most of you have seen, you know, the normal random variable in your earlier courses in

probability and statistics. So, people also call it in different names. Sometimes, you know we

call it Gaussian random variable, because Gauss was the mathematician who actually

analyzed such type of probability density functions.

Brownian motion or Wiener process, actually this is same process but having two different

names, due to mainly historical reason. So, Robert Brown was a botanist who actually

observed certain random motions in pollen grains suspended, you know, I mean, inside a

liquid water, and then later on people realized that, that motion is not caused by the pollen

grain itself but is caused by the water molecules bombarding different parts of the pollen

grain which is giving unbalanced force and that is why the movement is exhibited. And later

on, it was Albert Einstein who wrote a paper in 1985, where he gave mathematical

formulation of Brownian motion.

Actually 5 years before the work of Albert Einstein, there was one work by one PhD student,

mathematics PhD student called Louis Bachelier who also, I mean formulated mathematical

definition of Brownian motion, as a limit of random walk. So, let us now come to the

definition of Brownian motion.

Before that, let me also clarify why do you call it Wiener process, because Wiener was a

mathematician who studied properties of Brownian motion in greater details and then, and it

became more, you know, popular among mathematicians because we then got much richer

properties, richer literature on Brownian motion. So, we call sometimes Brownian motion,

sometimes we call Wiener process, during the course also I might use both the terms at

different occasions.



So, Brownian motion is basically a stochastic process and we have already discussed, that a

stochastic process is nothing but a family of random variables. And that family parameter

here is, continuous time t from close, I mean 0 and onward, positive.

So, it is a continuous time process. So, time is not discrete, like 1, 2, 3 it is not discrete time

process but continuous time process. That means that Brownian motion is a dynamics, which

evolves continuously. And another thing is that its paths are also continuous, so that we are

going to see.

So, we call a particular process, here so we are just having a family of random variables, Bt,

t 0 or positive, is said to be a Standard Brownian motion if satisfies the following condition,

that it starts with 0, from the origin, and then that, the map t to Bt, this path is almost surely

continuous. That means, when you have real, when you observe realization of Brownian

motion, you observe the whole path is a continuous function. And you realize this with

probability 1. So, that is probability of the paths, I mean, such that this is continuous, this is

1.

Another thing is that Bt has independent increments. That is that t1, t2 etc. if these are some

time points you fix first, like partition time, and then you look at the increments of the

Brownian motion during these subintervals, for example, Bt2 minus Bt1, Bt3 minus Bt2, etc.

Btn minus Btn minus 1, these are all small, small increments. And these increments, should

also be independent, independent random variables, so Bt minus Bs is independent of all the

paths at time s or before.

So, if you consider s as your present time and t as your future, then Bt minus Bs is future

increment and this statement is saying that the future increment is independent of the present

and past. Because when time u is between 0 to s that is time present or past, so this increment,

is a random variable but the random noise has no dependence on what happened during past

and present.

There is another property, that this difference, the increment Bt minus Bs, this difference

follows a normal random variable, so normal distribution with mean 0 and variance t minus s.

Importantly that this is increment, s is present, t is future, so this is future increment Bt minus



Bs but that is a random variable with mean 0 and it has variance t minus s, the time

difference, time difference is the variance.

So, here as I have mentioned here, normal mu sigma square, so here mu is the mean and

sigma square is the variance. So, this is, t minus s is the variance, not the standard deviation,

this is the variance. So, that is the definition of Brownian motion. When one defines, such

object one can ask a very relevant and mathematical question, that does there exist any

Brownian motion, why is it so, because we are putting so many conditions.

So, these conditions like you know, we are talking about that Brownian motion is a stochastic

process, which has all these conditions. After putting all these conditions what is the

guarantee that there exists one such process which satisfies all these conditions.

It is not immediate but one can prove that, actually that is a consequence of a theorem. One

can use Kolmogorov Consistency Theorem which asserts that after only by, you know

declaring or fixing, the finite dimensional distribution that means, you know you just take

finite times and there you are determining what is the distributions of the process there and

for all possible such kind of description can determine the process itself.

However, there are some more additional properties, for example that continuity of the path

etc. So, that is not assured from the Kolmogorov's Consistency Theorem that needs additional

work. So, that is actually consequence of one nice property of normal random variable,

Gaussian here, since you know, this difference, the variance is becoming smaller and smaller

as your t and s is becoming closer and closer, because t minus s is going to 0 then.

So, then that is say the variance is going to 0 and the mean is 0. That means you know, your

Bt and Bs would be closer and closer, when t and s is closer and closer. So that gives, you

know intuitive understanding that why should one expect that the Brownian path should be

continuous. But of course, that is not the proof, the proof requires much more, detailed

analysis.

So, we are not going into the details of the proof. So, we accept that, there exists a Brownian

motion that means there is a stochastic process which satisfies all these properties. And then

that process is unique because as I told, that Kolmogorov's Consistency Theorem says that,

by fixing these, you know conditions we can actually pinpoint one single stochastic process.



So, uniquely one single law, so that stochastic process we are going to call as Brownian

motion. So, that was a brief introduction of the definition of Brownian motion. Next, let us

try to see that what do we mean by Brownian motion, how does the path look like.
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So, here I have made one random walk, random walk plot. So, this random walk here, the

time step is very small, so as I told that the Louis Bachelier's approach was, that Brownian

motion as a limit of random walks, so I took that approach to approximate a Brownian

motion.

This is simulation of approximate Brownian motion. Here, the time step is taken as 0.1. So,

then we can actually see that, various different sample path. It started from 0 and then if we

run it again, we get various different paths of Brownian motion. So, it is a stochastic process,

each and every time we are going to get different, different realization.

So, I am here not seeing the dynamics, you know over time, as time is increasing but I am

looking at here the whole, whole evolution of Brownian motion between time 0 to time 7

perhaps, and then various different realization of that. And we see that, these are the paths

what is obtained from this.

And as I told that this is just an approximation, so that the granularity is 0.1, so we cannot see

zigzag pattern smaller than 0.1. It looks like smooth, but Brownian motion is not this smooth,

it is, I mean, does not matter how small interval you zoom in, you would always find, you

know fluctuations in the process, it is just an approximation. From far you can possibly see, I

mean, it looks like a Brownian motion.

Now, we are going to see one more nice property of Brownian motion that Brownian motion

is a martingale. We have seen in earlier lectures, the properties of martingale. We have seen

the definition of martingales and we have actually discussed how to integrate with respect to

a martingale, square integrable continuous martingale, and also you have seen that how to

integrate with continuous local martingale. So, Brownian motion happens to be a square

integrable continuous martingale.
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So, let us first show that, Brownian motion is a martingale, with respect to a filtration. So,

what filtration we are choosing, so we are choosing the filtration Fs, or say Ft is equal to the

sigma algebra generated by the Brownian motion Bu, where u is from time 0 to t. So, the

smallest sigma algebra generated by Bu. And we, this you know, family of sigma algebra

because if we change t we are going to get various different sigma algebras. This family of

sigma algebras gives you a filtration.

However, this is not the usual, might not satisfy the usual hypothesis. One might need to

augment, you know, some more negligible sets to make it complete. So, we assume that, we

have done that, so this is the filtration which is generated by the Brownian motion itself.

Now, our question is that, is Brownian motion a martingale with respect to this filtration? For

answering to this question, we look for the conditional expectation.

So, conditional expectation of Bt given Fs, we know that we need to prove that this

conditional expectation of the future of Brownian motion value, given the filtration generated

by present and past, so s is the present time s, is equal to Bs. If we prove that then we would

be able to confirm that B is a martingale, the Brownian motion is a martingale.

So, let us write it down. So, what we do first, we subtract and add the present value of the

Brownian motion, we get this equality and then here what we do is that this part we take



together, Bt minus Bs given Fs and the remaining term just Bs we write down separately, Bs

given Fs.

Now, here we have Bt minus Bs given Fs. What is Bt minus Bs, this is increment; the future

increment of the Brownian motion given Fs, Fs is the filtration generated by the Brownian

path from 0 to time s, s is present.

We have seen, as a property of Brownian motion that future increment, that random noise or

random variable is independent of the path of the Brownian motion from time 0 to s. It is

independent. So, this is the situation when we are talking about conditional expectation, of a

random variable given a sigma algebra, such that the random variable is independent to the

sigma algebra. Then we know, that this conditional expectation would be the same as just the

expectation of the random variable, Bt minus Bs.

On the other hand, here what we have is that Bs, so this Bs is Fs measurable. Why, because Ft

is actually the signal generated by time 0 to t. So, that means Fs includes Bs itself, so Fs, Bs

is Fs measurable. Since, we know that conditional expectation of a random variable given

sigma algebra is the random variable itself, when this is measurable with respect to sigma

algebra.

So, these are two extreme cases when this random variable is independent to the sigma

algebra, then we find out the conditional expectation is expectation of the random variable,

where the random variable is measurable with respect to sigma algebra then conditional

expectation just the random variable.

However, we know the increment is normally distributed in mean 0; mean 0 so expectation is

0, so this part is 0, only Bs remains. So, here we have proved that conditional expectation of

Bt given Fs is equal to Bs. Hence, the process Bt is a Ft martingale.


