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Let us continue now, in the last two videos we have looked at Noetherian rings. These

are rings where every ideal is finitely generated or alternatively these are rings where ev-

ery ascending chain of ideals stabilizes. We looked at various examples of Noetherian

rings, that we know integers, polynomial rings, over fields in one variable, even in poly-

nomial ring in one variable over the integers.

And, we also looked at a couple of examples of rings that are not Noetherian, a polyno-

mial infinitely many variables or a field for example, or the ring of continuous functions

from R real numbers to real numbers. And, we also observed that if a ring R is Noether-

ian any quotient ring R mod I is Noetherian for every ideal I.

So, now the main theorem in the study of Noetherian rings is called the Hilbert basis the-

orem. So, that is on your screen now, it says that if you have a ring which is Noetherian,

then a polynomial ring over it in one variable is Noetherian also ok.



So, let us prove this and using this of course, we can apply induction to prove that ring

polynomial ring in finitely many variables over a Noetherian ring is also Noetherian. So,

after proving the theorem I will remark on how to apply it. So, this is the proof of Hilbert

basis theorem.

So, today’s video is dedicated to proving Hilbert basis theorem. So, we are going to use

the original definition of Noetherian rings and we will show that if I is an ideal in R x,

then every ideal it is finitely generated. So, let us start with that let I be an ideal so, an ar-

bitrary ideal. So, remember the goal is so, I will write that here goal is to show I is fi-

nitely generated.

So; that means, we have to exhibit a finite set of elements of I, which generate it as an

ideal ok. So, what we will do is the following; so, among all elements in I remember:

what are elements in I these are polynomials with coefficients in R in 1 variable x.
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So, elements of I indeed elements of R X it is itself are polynomials in X with coeffi -

cients in R right. These are all how elements of the polynomial ring look like. So, in par-

ticular  they are exact  they will  right  in  mathematical  symbols,  they are of this  form

where x is of course, a symbol an through a 0 are elements of R and n is a non negative

integer. So, n is 0 1 2 3 and so on ok.



So, these are elements of R. So, now, I being an ideal consists of some of some such

polynomials if I is 0, if I is the 0 ideal then it is certainly finitely generated. So, we may

assume I is not the 0 ideal right, 0 ideal is certainly a finite ideal, it consists of only the 0

element.

So, it is surely finitely generated. So, we may assume I is not 0; that means, it contains

nonzero polynomials and for every nonzero polynomial we have what is called the de-

gree right. So, what is the degree of this? So, if a n is nonzero we always assume that

otherwise we will not even write that term. So, degree of this is n. So, this is the largest

power of x that you see in the polynomial. So, this is defined for every nonzero polyno-

mial. So, we look at degrees of all non-zero polynomials in x in I.

So, choose f, f 1 to be 1 the following, choose f 1 to be a polynomial in I which has least

degree. So, choose f 1 to be a nonzero polynomial, f 1 is nonzero to be a polynomial in I

which has least degree among all elements, all of course, non-zero elements; so, that I

will forget maybe sometimes among all nonzero elements in I ok. So, of course, you can

avoid you separating out nonzero elements by declaring the degree of the 0 polynomial

to be 0. 

So, I want to take the polynomial which is least degree among all non-zero elements. So,

I remove 0 element. What am I doing. So, f I of course has infinitely many elements typ-

ically. So, we look at degrees of each nonzero element of I. So, these are all non-negative

integers it can be 0. For example, if I consists contains a nonzero constant it is degree is

0 so, potentially 0, but there are non-negative integers.

So, among all these non-negative integers there will be 1 with which is smallest, non-

negative integers have this property that any set of non-negative integers has a least ele-

ment. So, we identify that maybe it is 3, maybe 3 is the least degree of polynomials in I.

There would be lots of polynomials of degree 3 in I perhaps, but I am just going to pick

one of them. So, f 1 is not unique definitely, but there is some such polynomial.
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This means so, I am going to spell this out because it is an important fact, important

property of how we are choosing f 1. So, this means that if f is any non-zero element,

then degree of f is greater than or equal to degree of f 1, because of the choice of f 1

maybe it is equal to degree of f 1 that is allowed, but it can be strictly smaller. Because,

if it is smaller than the degree of f 1 is not the smallest degree of an element in I, it has

smaller degree elements.

So, we would pick that or even something smaller. So, if f is in I and it is non-zero then

degree is at least degree f 1 ok. So now, we have chosen the first element. So, like in a

previous proof in the previous video where we were doing proving that ascending chain

condition  implies  Noetherian  S.  We are going to  can construct  an infinite  chain,  se-

quence of elements of I and this is our first element f 1 is the first one.

Now, consider the ideal generated by f 1. So, of course, it is contained in I clearly. So,

clearly the ideal generated by f 1 is an I, because f 1 remember is in I. So, I emphasize

that here f 1 is a I or ideal generated by f 1 is in I. If, it is actually equal to I, then we are

done, we are done because what is the goal which I wrote here we want to show that I is

finitely generated.

If, I is actually generated by f 1 it is generated by a single element, which is what we

want which we want in fact, you have finite set of generators. So, if f 1 is I we have



done. If not in other words if the ideal generated by f 1 is not I, then I is of course,

strictly bigger because certainly it contains f 1, but if it is not equal it is strictly bigger.
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That means, yet another way of saying that is that the set I minus f 1 is not empty. In

other words elements in I that are not in f 1 is a non-empty set. There are elements in I

that are not inside the ideal generated by f 1. Now, choose f 2 to be exactly as before,

how did we choose f 1, f 1 to be a least degree polynomial among all elements in I. Now,

I do not do it among all elements in I, but I choose f 2 to be a least degree polynomial in

I minus f 1. So, this means among. 

So, that is: among all polynomials in I minus f 1, f 2 has least degree. So, said another

way if f some other polynomial f is in I minus f 1 it is degree is at least the degree of f 2.

So, again remember f 2 is not unique with this property, there is perhaps lots of polyno-

mials which have least degree, but I am going to just choose 1 I do not care how I chose

this I just choose f 2 to be that, now we continue. If, f 1 f 2 is equal to I, we are done

again, meaning we have shown that I is finitely generated by these two elements.

Otherwise, we continue and how do we continue? We simply take f 3 to be a least degree

polynomial in I minus f 1 f 2 now, right. I if I is not equal to the ideal generated f 1 f 2 it

must be strictly bigger than ideal generated by f 1 f 2; that means, there are elements in I

that are not in ideal generated by f 1 f 2 lots of them infinitely many may be, but I am go-

ing to choose the one which has the least degree. And, of course everywhere I am taking



nonzero, but that is me I do not need to write that here because 0 is in the ideal generated

by f 1 f 2. So, only elements in I minus f 1 f 2 will be non-zero.
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So, we continue like this to obtain a sequence of elements f 1, f 2, f 3 and so on in I. And,

just to repeat for you the procedure of how to choose these. Suppose, you have chosen

100 of them, f  100 is chosen, how do you choose f 100 and 1 you choose it in the fol-

lowing way you look at the ideal generated by f 1 f 2 f 3 up to f 100 this is a finitely gen-

erated ideal which sits inside I. So, if it is equal to I we stop we are done there is no more

work to do, but if I is strictly bigger than the ideal generated by f 1 f 2 f 100.

There are nonzero elements in I minus the ideals generated by f 1 f 100. Among all those

elements we pick a polynomial with the least degree which we call f  100, f  101. And,

then we continue, remember that if this process stops at any point we achieved our goal

which is  that I is  finitely generated.  So, we have to rule out the possibility  that this

process continues forever. And, we have now constructed this and I will only remark

now, this is something we will use later. Note that degree of f 1 is less than degree of f 2,

less than degree of f 3, less than degree of f 4, and so on. 

So, degrees keep increasing why is that? Because, when you are choosing f 1 you are

choosing a polynomial with the least degree right. So, in other words when I wrote ear-

lier if f is any element of I non-zero then degree of f is greater than equal to degree f 1, f

2 is one such element right because f 2 is being chosen later. So, degree of f 2 will be



greater than equal to f 1. Now, f 3 will be chosen after f 2. So, if f 3 has strictly a smaller

degree than f 2, we would not have chosen f 2 in step 2.

So, degrees keep increasing like this is very easy point, think about it for a minute paus-

ing the video, think about it for a minute if it is not clear to you. At each stage we are

picking the lock a picking a polynomial with the least degree and if we have chosen f

100, f 101 is to be chosen in the next step. So, if f 101 has smaller degree than f 100, why

would we choose f 100 now. We would have actually chosen something which has a

smaller degree.

So, f 1 f 100 and 1 which is actually chosen at a later stage will have a bigger degree than

f 100, when I say bigger it could be equal, but it will not be less than it could be less than

or equal to we have this relation now. So far we have not used hypothesis remember we

cannot in general wrote that R x is Noetherian for arbitrary rings R. We want to use the

fact that R is Noetherian and that is done in the following way ok.
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So, what we do is let a i. So, now, I have constructed f 1, f 2, f 3 and so on. So, we going

to work with these now let ai, be the leading coefficient leading coefficient of f i. So, we

do this for every i, what is the leading coefficient. So, remember I will simply say this by

saying lc of fi, lc of f i simply the coefficient of the largest degree term you have.



So, lc of 2 x squared minus 3 x plus 1 is 2, lc of minus x cubed plus 3 x minus 8 is minus

1. So, the leading coefficient is simply the coefficient which is in front of the largest

power of x in your polynomial. So, certainly a i is in R and this is where we will go to R

now and use the hypothesis. So, we have now a 1, a 2, a 3 and so on these are all ele-

ments of R. So, we have an infinite sequence potentially infinite sequence of polynomi-

als and we are now forgetting the polynomial except the leading coefficient we take the

collection of leading coefficients.
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And, define now J to be the ideal generated by all these leading coefficients. So, this is

an ideal by definition right. I am not taking the set of these leading coefficients of course,

that is certainly not an ideal I am taking the ideal generated by. So, these ideal these are

notation remember generated by a 1, a 2 and so on.

Now, my hypothesis is R is Noetherian correct, this implies J is finitely generated, be-

cause R is Noetherian, every ideal of R is finitely generated in particular J is finitely gen-

erated. Now, I claim that we know that there is in fact, a finite set of generators.

But, I can assume that J is actually equal to a 1, a 2, a n for some n ok. This is a little ex-

ercise for you: what we actually get from the statement that J is finitely generated is that

there is a finite set of generators. They need not be to begin with maybe the finite set of

generators you are given are not a 1, a 2, a they are not they are not actually is, but you

take any of the generators. So, maybe I will just quickly write the reason.



So, reason for this reason for this implication is that let J be generated by let us say b 1, b

s ok; b 1 through b s are inside J right. We know that J is finitely generated; that means, J

belongs sorry J is generated by some finitely many elements of it contained in J. Now,

we know that a 1 through a n and so on I mean infinitely many a i’s potentially infinitely

many a i’s generate J.
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So, since a 1, a 2 and so on generate J and b 1 is in J let us use first b 1, we can write b 1

as some r 1 a 1 plus I do not know what actually it need not b 1. So, r 1 a n 1 plus r 2 a n

2 plus r k a n k, remember that even though J has infinitely many generators does any

particular element of J can be written as a finite sum like this.

Similarly, we can write each bi in terms of a i or a 1, a 2; the point is maybe b 1 will re-

quire the first 1000 a ns b 2 requires first 1 million a i s, b 3 may require first billion, but

I do not care I will because b 1 through bs is a finite set, I will look at all the a i’s that ap-

pear in b 1, all the a i’s that appear in b 2, all the a i’s that appear in bs and look at the

largest index of a that appears in those and take those up to that index a 1 a 2 an.

So, the point is J could be maybe generated by 10 bis, but if I include a i’s maybe I have

to go to 1 million, because maybe b 10 requires up to a million, but I do not care about

what n is it does not matter to me, if n is very big I am not looking to find an efficient set

of generators, I am only interested in finding generators. So, that I can say first n of them

generate J.



So, this is just an argument to explain that, again please pause the video and think about

it if it is not clear to you and you can ask questions if it is something is not clear to you

still. Another way to see this is we can also argue like this. So, we can consider the chain

like this so, a 1, a 2, a 1, a 2, a 3, and so on right. So, this chain this ascending chain sta -

bilizes because it is an ascending chain of ideals in Noetherian ring R.

So, it stabilizes; that means, it is equal beyond some point they are all equal, but they

must all equal J because if it is not equal to J we would have continued ok. So, this is an-

other argument to show that J is equal to the ideal generated by a 1 through a n. Now, fi-

nally, to finish the proof I claim that, I now go back to the ideal I in r x. In fact, will be

generated by remember that just to recap the proof, I have started with an arbitrary ideal

in R x, I is an arbitrary ideal in R x, I have constructed an infinite sequence by describing

the by the process described at the beginning of the proof.

And, I have taken the leading coefficients each of each of them; the ideal of the leading

coefficients which is actually an ideal J inside R is finitely generated. So, it is finitely

generated in fact, by the first n leading coefficients now to finish the proof I am claiming

that I is in fact, generated by those n polynomials, we do not need to continue.

And, the proof of this is the following. Remember how we were constructing these f i’s,

if I is not equal to f 1 f 2 f n, we would have chosen f n plus 1 remember; remember the

construction of f i’s. If, the ideal generated by the first n of them is not equal to I we

would have chosen f n plus 1 to be a polynomial of least degree among all elements of I

minus the ideal generated by f n ok.

So, now, we have f 1 through f n which is not equal to I and then we continue the process

that I described at the beginning of this proof. So, f n plus 1 has a least degree of all ele-

ments.
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But, now let recall an plus 1 is the lc of f n plus 1, because I have defined a I to be lc of f

i for every I, but this belongs to J, remember J is ideal generated by all the leading coeffi-

cients.

So, an plus 1 belongs to J, but I have just argued using the Noetherianness of R such that

a 1 through an generate J. So, a n plus 1 is an ideal generated by a 1 through a n. So, we

can write a n plus 1 as summation bi a i, i equal to 1 to n. So, just for clarity I will write it

like this. And, what are b i’s where b i’s are some arbitrary elements of R I do not care

what they are they are just elements of R.

Now, I forgot in the polynomial ring. I am actually now arguing inside the ring itself the

coefficient ring; because J is generated by this a n plus 1 can be written like this. Now, I

am going to define a new polynomial g as follows. So, g is defined as b 1 f 1 times x

power m 1, I will tell you what m 1 is, b 2 f 2 x power m 2 and all the way up to bn f n X

power mn, where mi is degree of f n plus 1 minus degree of f i for each i from 1 to n ok.

So, remember I remarked earlier that degrees of f i’s keep increasing; degree of f 1 is less

than equal to degree of f 2, less than equal to the degree of f 3, less than equal to degree

of f 4 and so on.
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So, these are all non-negative integers. So, note that mi is greater than equal to 0 for all i.

So, I can. In fact, consider x power m 1 x power m 2 x power mn these are if they were

negative of course, this will not be a polynomial x power minus 1 is not allowed inside a

polynomial, but because m i’s are non-negative I can put a coefficient exponent like that

and it is a polynomial. So, f 1 times x 1 power m 1, f 2 times x power m 2, f n times x

power mn; what kind of polynomial is g?

So, first note the following about g, we have first that g belongs to the ideals generated

by f 1, f 2, f n right, that is obvious because g is actually written as f 1 times something

plus f 2 time something right.

Because, f 1 is here, f 2 is here, f 1 is here. So, it is f 1 times something plus f 2 times

something plus f n times something. So, it is in the ideal generated by f 1 through f n.

Moreover, we also know that leading coefficient of g is equal to what, what are the de-

grees of these terms.

So, whatever is the leading coefficient of f 1? So, I am going to separately look at each

term that appears in g. Let us look at let us look at this term, this term, this term sepa-

rately. So, remember that, the reason I am multiplying by x 1 x power m 1 is. So, that the

degree of x power m 1 times f 1 is actually equal to a degree of f n plus 1 right. Degree

of f 1 is potentially smaller than degree of f n plus 1 by, but I am providing the remaining

x.



So, by multiplying by x power m 1 this term now will have equal degree equal to a de-

gree of f n plus 1 ok. Similarly, this term now will have degree equal to degree f n plus 1.

This term will have degree equal to degree f n plus 1. So, what is the leading coefficient

of b 1 through of g? So, I can certainly write this as summation lc of bi f i x power mi.

So, you have a sum of polynomials the leading coefficient all this polynomials have the

same degree right, because this degree is degree f n plus 1, this degree is degree f n plus

1, this degree is degree f n plus 1. So, the leading coefficient of the sum is simply the

sum of the leading coefficients; leading coefficient of g is the leading coefficient of the

first one, plus leading coefficient of the second one, plus leading coefficient of the third

one.
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But, now continuing here, what is leading coefficient of this? This is summation leading

coefficient of I can pull out bi right; bi is actually a constant term, bi is an element of R.

So, this is summation. So, of course, summation goes from 1 to n, summation from 1 to

n, bi times leading coefficient of f i times x power mi correct, but leading coefficient of f

i times x power mi, see f I could be I am just giving an example so, f I could be sum a 5

x power 5 and so on. So, not a 5 let us say c 5 x power 5 and c 4 x power 4 and so on.

So, the leading term coefficient is c 5 and I multiply by x mi f i I get c 5 x 5 plus mi c 4 x

4 plus mi plus and so on. So, the leading coefficient does not change. From f i when I



multiply by x power mi, because the leading coefficient of x power mi is 1 in general

when you multiply 2 polynomials leading coefficients get multiplied also.

Here leading coefficient of f i mi is just leading coefficient of f i times leading coeffi-

cient of x power mi, but leading coefficient of x power mi is 1 so, I can omit this. So, bi

times leading coefficient of f i, but what is leading coefficient of f i? Leading coefficient

of f i is by definition a i. So, I have summation bi a i , but remember, what is summation

bi a i , it is actually a n plus 1. So, this is from before this is actually an plus 1.
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So, all this calculation proves that leading coefficient of g is an plus 1, which remember

is also leading coefficient of f n plus 1. Now, consider f n plus 1 minus g. So, you have 2

polynomials, but their leading coefficients are. So, they are first of all equal degree, de-

gree of f is equal to degree sorry degree of f n plus 1 is equal to degree of f and the

largest degree in each of them is same and moreover the coefficients are also same.

So, when I subtract this degree of f n plus 1 minus g is strictly less than degree f n plus 1

right because, you have 2 polynomials as an example.
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So, let us look at an example. So, you have f n plus 1 could be 3 x power 7 minus and so

on so, minus 4 x power 6 I do not care what it is; what we know is that g. So, this is just

an example g also has the same degree and has the same leading coefficient; so, but other

terms may very well be different. What now I am doing is f n plus 1 minus g. So, when I

do that this goes away.

So, what I have is actually minus 11 x power 6 and so on. So, the degree of this drops,

what I mean is when I subtract one polynomial from another polynomial these two col-

umn will have they say these two polynomials have same degree and same leading coef-

ficients. The first term will cancel out and what you are left with has a smaller degree.

But, this now tells me that degree of this is strictly less than degree f n plus 1. So; that

means, and now recall how we chose, chose f n plus 1. We chose f n plus 1 to be a least

degree polynomial, in I minus the ideal generated by f n right. We chose this to be the

least degree polynomial. And, degree of f n plus 1 minus g is strictly less than degree f n

plus 1.

So, in fact, this tells me that hence f n plus 1 minus g is inside f 1 through f n right, is

that clear, because f n plus 1 minus g  is certainly an element of the ideal, because every-

thing is happening within the ideal I. So, f n plus 1 minus g is an element of the ideal, if

it was not in the ideal generated by f 1 through f n. So, suppose this is not true, suppose



what is in this box is not true; that means, this polynomial f n plus 1 minus g is not in the

ideal generated by f 1 through f n; that means, it is an I minus f 1 through f n.

Because, if it is not in the ideal generated by f 1 through f n it says it is in its comple-

ment; that means, it is inside this, but it then because it has smaller degree than f n plus 1

that violates how we chose f n plus 1, because that was supposed to be least degree poly-

nomial in this compliment. So, there is no choice, but for this to belong to this.

But, g already belongs to right, g belongs to this because the way I defined g it certainly

belongs to, I commented that here, g is already written as a linear combination of f 1

through f n. So, g belongs to this, now we can write f n plus 1 as f n plus 1 minus g plus

g. This belongs to I sorry this belongs to f 1 through f n this belongs to f 1 through f n, g

by definition belongs to this difference belongs to this because of this argument. So, this

belongs to f 1 through f n, but this is a contradiction.

But, this is a contradiction because, this is a contradiction because, if f n plus 1 belongs

to this we would not choose this, f n plus 1 is chosen to be a least degree element in the

compliment in particular by definition, it does not belong to f 1 through f n. So, there is a

contradiction. So, the proof is complete.
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So, we have proved that R x is Noetherian ok. So, this is the Hilbert basis theorem. The

proof is not difficult, but it could be confusing if you are seeing this for the first time. So,



please go over this video as many times as you have, to make sure that you understand

this argument this is a very nice argument to show that if R is Noetherian, the polynomial

ring in one variable over R is also Noetherian.

So, corollaries: if R is Noetherian this implies that the polynomial ring in n variables is

also Noetherian. The Hilbert basis theorem actually talks about adjoining 1 variable. But,

I get the case of finitely many variables easily, because if you remember how we talked

about polynomial rings for first time.

If, I do this R polynomial ring in 1 variable n variables is like this. It is actually can be

thought of as a polynomial ring in X n with coefficients coming from this is just a matter

of perspective right. Here variables are X 1 through X n coefficients in R here variable is

X n coefficients are in this ring, but now this is become the becomes a polynomial ring in

1 variable over this ring.

So, it suffices to check R adjoined is Noetherian, because by Hilbert basis theorem if this

is Noetherian by adjoining an extra variable this is Noetherian, and we keep doing this

by induction we get this ok. So, this is clear right. So, all I am saying really is going from

R to bigger polynomial rings, R Noetherian implies R x 1 Noetherian by diff by the state-

ment of Hilbert basis theorem.

So, R x 1 adjoined x 2 is Noetherian. So, this is a ring it adjoined it is a Noetherian ring

adjoined an extra variable is Noetherian, but this is nothing but this is just different nota-

tion for the same ring. So, polynomial ring in 2 variables is Noetherian and you keep go-

ing. As long as you are only attaching finitely many variables you get Noetherian s.

Remember of course, that if you attach infinitely many variables we know that it is not

Noetherian. And finally, I will end the video with this corollary if R is Noetherian and I

in R polynomial ring in n variables is an ideal this implies, the quotient ring of the poly-

nomial ring R x 1 through xn modulo I is also Noetherian. This is because R is Noether-

ian by the previous corollary the polynomial ring is Noetherian and by a proposition that

we did in the previous video any Noetherian ring modulo an ideal is also Noetherian.

So, this is an important statement. So, in a lot of most of the course we will only deal

with polynomial rings and their quotients among other rings, but this is an important

class of rings for us and these are all Noetherian because of Hilbert basis theorem. So, in



this video we proved a very important theorem this is one of the most important theo-

rems in the whole course called Hilbert basis theorem. And, from next video onwards we

are going to study a special class of rings two special class of rings called principal ideal

domains and unique factorization domains.

Thank you.


