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In the last video, I talked about maximal ideals in a ring. I showed in particular that every

commutative  ring  with unity  has  a  maximal  ideal.  We used what  was called  Zorn’s

lemma for this and as I told you in that video this is an important fact, the proof is not

that important. So, if you are unfamiliar with Zorn’s lemma, you do not need to worry

about it. It is the statement of the theorem which is that every ring contains maximal

ideals that we will use in this course. 

So, we also talked in the previous video or last two videos about prime ideals. Prime

ideals and maximal ideals are important classes of ideals in a ring and we also talked

about integral domains; integral domain is a ring where the zero ideal is a prime ideal.

So, in this video I am going to do some problems to get familiarized with all these con-

cepts that we are doing in the last few videos. So, this is a video containing problems.
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So, the first problem is the following. So, show that a finite integral domain is a field. So,

remember that, what is a finite integral domain? You know what integral domain is, it is



a ring where the zero ideal is a prime ideal, finite simply means this has only finitely

many elements 

So, let us do this so let R be an integral domain and suppose that R is finite, so this is the

hypothesis. So, in other words R has only finitely many elements. So, let us list these ele-

ments, so there let us a call a 1, a 2, a n. So, say R is like this. So, remember this is where

the finiteness assumption is critically used, R has only finitely many elements say n of

them. So, I will call them a 1, a 2, a n like this. 

Now, I will consider the following. So, of course, remember that 1 is an element of R. I

am not specifying what 1 is, one could be a 1, 1 could be a 2 and so on. I do not need to

know what one is, I am just listening all the elements they are all same to me. 
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Now, consider, multiply each element of R, let say by a 1. So, what I am doing is, con-

sider a a 1, a 1 a 1 which is a1 squared, a 1 a 2, a 1 a 3, a 1 a n right. So, let us consider

these n these elements, I now claim that these are all distinct this is my claim.

So, you choose a 1 multiply a 1 with every element of the ring. I claim they are distinct,

why is this? So, let us prove this; this is because suppose they are not distinct may be

when you multiply two different elements a i and a j when you multiply with a 1 may be-

come equal that is a possibility. I am saying that it does not happen in integral domain.



So, suppose a 1 a i is equal to a1 a j for suppose this happens, if a1 a i is equal to a1 a j. I

claim that this implies by usual ring theory ring properties this is a1 times a1 minus a j

right, I am taking a 1 a j to the one side. Factoring a 1 from each term and writing a 1

equals a a i minus a 1 times a i minus a j is equal to 0. But now since R is an integral do-

main. Remember, R is an integral domain we know that one of the equivalent properties

of an integral domain is that if you have two ring elements whose product is 0 one of

them is 0. So, a 1 is 0 or a i minus a j is 0 

So, now suppose a 1 is not 0. So, I am going to assume that assume a 1 is not 0, you will

see why I will assume that in a minute. So, I am assuming a 1 is not 0, remember I am

choosing a 1 to begin with. So, I will only deal with non-zero elements, so a 1 is non-

zero. So, this is not possible; that means, a i minus a j is 0, but; that means, a i is equal to

a j ok. So, in other words what we are saying is that, if a 1 multiplies a i and a j to the

same element, in other words a 1 a i is equal to a i a j then a i is equal to a j. 
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So, what did we conclude? Hence, if a 1 is not 0 then a 1 squared, a 1 a 2, a 1 a n are dis-

tinct elements. In other words so R is equal to a 1 a squared, a 1 a2, a 1 an. Remember,

because R is a ring when you multiply elements of R you again get elements of R. So,

the set a 1 squared, a 1 a 2, a 1 a n is certainly a subset of R, but because R has  n ele -

ments and these are n distinct elements it must equal R, so R is equal to this set. 



But 1 is contained in R; so 1 is contained in this set a 1 squared, a 2, a 1 a 2, a 1 a n. So, a

1 a i is equal to 1 for some i from 1 to n, we do not know what it is, we do not need to

know what it is, but for some i, a 1 a i is equal to 1. So, a 1 has an inverse has a multi-

plicative inverse, I should write. So, a 1 has a multiplicative inverse. So, as soon as a 1 is

non-zero, we are concluding that a 1 has a multiplicative inverse.
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The same argument works for any non-zero element of R right. We started with a1, but I

instead of a1, we can choose any non-zero element of R and multiply by that, argue that

there are n distinct elements. So, one of them must be 1, so that element has an inverse. 

Hence, in other words R is a field. So, as soon as you have a ring where every non-zero

element has a multiplicative inverse, it is a field by definition right. A field is a ring

where every non-zero element has a multiplicative inverse. So, I have assumed that R is

a finite integral domain and showed that R is a field. So, this is exactly the problem.

Now, before continuing to the next problem, I am going to give two examples to illus-

trate the fact that both statements that we have finite and that it is an integral domain or

crucial, without that you cannot conclude that R is a field.

So, let us consider R to be Z, the ring of integers. So, this is an integral domain, but not a

field right that we know it is not a field because for example, the integer 2 which is a

non-zero integer has no multiplicative inverse. So, it is an integral domain, it is not a

field and the reason that the previous problem does not apply here is R is not finite. 
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So, the previous argument will not work here because for example, if you multiply every

element of integers by 2 you get 2 n where, n is in Z, this is not equal to Z. When you

multiply all elements by 2, you get also an infinite set using the previous problems argu-

ment, but it is not equal to Z, so 1 is not in this. So, in other words 2 does not have a mul-

tiplicative inverse. So, the previous argument is critically dependent on the fact that R is

finite. So, if you have an infinite integral domain it need not be a field. 

On the other hand, if you have a finite ring, but it is not an integral domain again it need

not be a field, so this is not a field. So, this is an obvious statement because a field is by

definition in integral domain. So, this is not an integral domain and I will quickly tell you

why the previous argument fails here. 

So, for example, if you take remember 2 bar has no multiplicative inverse in this ring.

So, if you Z mod 4 Z remember is the set of residues modulo 4. So, the elements can be

written as 0 bar, 1 bar, 2 bar, 3 bar; if you multiply each element by 2 bar, what you get?

So, you get 2 bar times 0 bar which is 0 bar, 2 bar times 1 bar which is 1 bar, 2 bar times

2 bar which is 0 bar, 2 bar times 3 bar which is 6 bar which is 2 bar ok.

So, after multiplying by 2, we have only 2 distinct elements not 4 distinct elements. Ear-

lier, in the case of finite integral domains, when you multiply by non-zero element you

get all the ring elements, here you do not get all the ring elements you get only 0 bar and

1 bar sorry 0 bar and 2 bar, I should write 2 bar times 1 bar is 2 bar.



So, 1 bar is not one of this products, so 2 bar has no multiplicative inverse. So, these ex-

amples show that if you have an integral domain, but it is not finite it is not a field. If you

have a finite ring that is not an integral domain also it is not a field ok. So, let us continue

now. So, I will do one more problem now next problem.
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Problem number 2 is the following, let us consider any ring R without any further as-

sumption it is R is a ring and let I and J be ideals of R, let I and J be ideals of R. So, I

want to show that, any element in I intersection J ok. So, actually I should not write it

like this, so I will write it like the following. Show that the residue I will explain this,

residue of any element of I intersection J in the quotient ring R mod I J is nilpotent ok.

So, this requires a bit of an explanation. So, let me carefully explain what do I need to do

here, so before I do the solution. 

So, remember if I, J are ideals implies I the product is also an ideal. So, this is in one of

the earlier videos I defined the product of two ideals. So, these are elements which are

obtained by taking products of elements of I and J adding any finite number of them ok.

So, the way to remember this is, I J consists of finite sums of products of elements of I

and J. So, this is an ideal which is an easy verification. 
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So, we can consider R mod I J, so the quotient ring. Remember, every time you have a

ring and an ideal in that ring you can consider the quotient ring. Now, the problem is say-

ing that if so let a be an element of I intersection J, residue of any element of I intersec-

tion J. So, let a be an element of I intersection J. In other words, a is in both I and J, we

want to show that we have to show that the residue of a in R mod I J is nilpotent. Residue

is denoted by a bar, but remember it is the coset of a. So, residue of a is a plus I J and

there is an element of R mod I J. Remember, the quotient ring as a set consists of all left

cosets under the operation of addition, so residue of a is this. 

Finally, what is nilpotent? This is something I defined in previous video; an element of a

ring is called nilpotent, if a power n is 0 for some positive integer n right, a is called

nilpotent if some power of a when you multiply a with itself certain number of times you

get 0. We want to show that a plus I J is a nilpotent element of the quotient ring R mod I

J. 



(Refer Slide Time: 16:01)

In other words, that is, we want to show a plus I J power n is equal to 0 for some n right,

this equality must happen in the ring R mod I J right because residue of a in R mod I J is

nilpotent. So, a plus I J power n is equal to 0 for some n.

But remember, what is a plus I J plus power n under the ring under the definition of mul-

tiplication in the quotient ring; this is simply a power n plus I J, but let me actually write

0 bar here because 0 means you might be confused with the 0 element of the ring. So, 0

bar is the 0 element of the ring R mod I J.

So, a plus I J power n is a n plus I J. Remember, this in order for this to be equal to 0 bar,

we want a power n is I J for some n, this is now after translating everything in the prob-

lem this is not we are reduced to if a belongs to I intersection J, a power n belongs to I J

for some n.

Now, once you identify that this is what you need to do, its clear what n you need to

take. Remember, what is known about a and I, a it is in I intersection J; that means, it is

in I as well as it is in J. Once that happens, a squared remember is an I J because a

squared is a times a, a is in I a is in J, if you recall the product of two ideals is sums of

products, one from the ideal I, the other from the ideal J. Here I am just taking a single

product a times a; a is in I, a is in J. So, a times a is an I J; that means, a squared plus I J

is 0 in R mod I J.
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So; that means, hence the conclusion is a bar is nilpotent in R mod I J. So, the question

was show that any element of I intersection J, the residue of any element of I intersection

J is nilpotent in R mod I J, we have shown that. In fact, we have shown that a square of

any element of I intersection J is 0 in R mod I J it is not just nilpotent, but the power you

need to take is just 2. 

So, the next problem I want to do is building on this notion of I J and the quotient ring R

mod I J ok. So, let me now do the following, let R be an arbitrary ring this is as before in

the previous problem also we started with in the ring and let I and J be two ideals, let I

and J be two ideals of R. So, I have a ring and two ideals of R.

Now, I am assuming something about these two ideals. Assume that I plus J is R and

again just like the product of two ideals, we have also learned about the sum of two

ideals and what is the sum? So, recall. So, I will use the colour red for recalling, I plus J

unlike the product I plus J is simpler actually all you need to do is a plus b, where a is in

I and b is in J. 

So, you can take two elements one from I one from J and you take their sum. If you take

this and you take the collection of those elements it is actually an ideal, that is an exer-

cise from a previous video and it is what we call the ideal I plus J. So, I plus J is this ok. 



So, now I am telling you that that is equal to R, that is not in general true, but in this

problem I am assuming that I and J have this property that I plus J is equal to R. 
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I need to now prove the following statement. So, there are two parts to this problem we

will first state one and solve it and then we will state two and then solve two. Show that

the first problem is I J is equal to I intersection J, so the solution of this we will do first.

So, under the assumption that I plus J is equal to R, show that the product is equal to the

intersection. So, there is one obvious in inclusion, so in order to show equality, we will

show that I J is contained in I intersection J and we also show that I intersection J is con-

tained in I J. 

Note that, the inclusion I J is contained in I intersection J always holds and this is an easy

check. What I mean always holds is, do not need we do not need the hypothesis that I

plus J equal to R right. So, this is in general true not just for ideals whose sum is R, why

is this? I will show you quickly why is this. 

So, why is this? Take an element of I J. What is an element of I J? Arbitrary element is

of this form right a i is in I, bi is in J so take an arbitrary element. Now, a i is in I. So, and

bi is in J; that means, bi is a ring element a i is a ideal element; that means, a i b i is in I

because remember an ideal has a property that anything in the ring times anything in the

ideal is in the ideal.
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So, a i is in I bi is in the ring; that means, a i b i is in I, but similarly for the same reason

bi is in J a i is in I; that means, a i is a ring element bi is the ideal element the product is

in J; that means, a i b i is in I intersection J. Once a i bi is in I in I intersection J, this

whole thing is in I intersection J, because I intersection J is an ideal this is something we

proved earlier or I have asked you to prove.

So, if you have a bunch of elements inside I intersection J their sum is in I intersection J.

So, all these elements are in I intersection J, so their sum is in I intersection J. So, the in-

clusion I J contained in I intersection J is trivial, it is very easy ok.
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So, now we will prove that the opposite inclusion holds. Now, we will show I intersec-

tion J is contained in I J and this is the crucial inclusion that is not in general true; after

solving this I will give you an example, this requires the hypothesis that I plus J is equal

to R. 

So, now since I plus J is equal to R, the element 1 belongs to I plus J right because the el-

ement the identity element 1 is a ring element it is in R, but I plus J is equal to R, so 1 is

in I plus J. So, there exist elements r in I and s in J such that 1 is equal to r plus s right.

So, 1 is an element of I plus J and I recalled for you what is I plus J, I plus J is simply the

collection of sums one from I one from J, so 1 is equal to r plus s ok.

So, now I am trying to show that I intersection J is contained in I J. So, let us choose an

element a in I intersection J, we will eventually show that a is in I J ok. So, now, 1 is

equal to r plus s that we know. So, we can write ar; a is equal to ar plus as right. I am

multiplying both sides by a, 1 is equal to r plus s means a times a is equal to a times r

plus a times s. This I claim will give me what I want because let us look at a r, what is r?

r is an I, a is an arbitrary ring element.

So, ar is in I fine, a is an arbitrary ring element r is an element of I, so this is in I simi -

larly, s is in J a is an arbitrary ring element, so a s is in J. So, ar is in I as in J so; that

means, there is an I plus J right. So, we have written a as something in I plus something



in J ; that means, and that is all we have started with an arbitrary element of I intersection

J and we have concluded that it is in I plus J.
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Hence, I intersection J is I plus J. So, we have the other inclusion always holds. So, I plus

J is equal to I intersection J. So, and then the second inclusion we needed crucially the

fact that I plus J is R. So, now, in general as I told you earlier this is not true. So, let us

take R to be Z and I to be 2Z and J to be 4Z. So, the ideal I is all even integers, the ideal J

is all multiples of 4. What is I J? In this case you can check that, it is simply 8Z. 

So, you take products of I elements of I with elements of J and you add them, everything

happens to be a multiple of 8 because 2 times 4, that is a crucial idea. And what is I plus

J? If you think about this, sorry, so sorry actually I made a mistake. So, I am not inter-

ested in showing that sorry I have to go back here I am not interested in showing that I

intersection J is contained in I plus J, I plus J is R. So, of course, I intersection J is con-

tained in I plus J, what I want is a is contained in I J; so now, yeah sorry.

So, what I want is a is contained in I intersection J. So, let me go back here a is contained

in I and r is and s is contained in J, so as is contained in I J. So, I this is something I

missed here. Similarly, a is contained in J and r is contained in I. So, this implies ar is

contained in I J ok. So, I should have written here a is remember I have never use that a

is actually both I intersection J both I and J that is crucial a.



So, a is contained in I a is contained in J whereas, r is contained in I. So, ar is contained

in I J it is a product of something in I something in J. Similarly, a s is also product of

something in I something in, so ar as is contained in I J. So, a is equal to ar plus as, it is

something in I J plus something in I J; that means, a is in I J.

So, what we have shown is that, in I intersection J is contained in I J and hence I inter-

section J is equal to I J, here I showed that I intersection J is already contained in I J.

Sorry, here we showed that I J is contained in I intersection I J a I J is contained in I in-

tersection J this we have showed. Now, we are trying to show that I intersection J is con-

tained in I J. So, I intersection J is equal to I J. 
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And now this example shows that, I intersection J is in general not equal to I J. So, I J in

this example when I is 2Z and J is 4Z, I J is 8Z; this is easy to check and what is I inter-

section J? Remember in this case, J is actually contained in I because every multiple of 4

is definitely even. So, if you take intersection of I and J, you will get J. 

So, and of course, J is 4Z, so the intersection of the two ideals is 4Z, the product of two

ideals is 8Z. So, I J is not equal to I intersection J, but one inclusion always holds I J

which is 8Z is contained in I intersection J. In the solution if you see what always holds

is that the product is in the intersection that we have, what we do not have here is I inter-

section J is contained in I J. So, this does not happen, but this inclusion always holds. 



And the problem here is why does the argument in the problem does not work, why does

it not work? It is because the sum of these two ideals and there is an exercise for you, I

will leave it for you to check. The sum of these ideals is actually 2Z and it is not Z. If

you take the sum of elements of I and J you get actually 2Z which is not equal to the full

ring. So, the sum is only a proper ideal and hence the argument in the problem does not

work and we do not have the equality of the product and intersection. 

So, just remember that product is always contained in the intersection, but for intersec-

tion to be contained in the product you need to assume that the sum of the ideals is the

full ring. So, sorry about the confusion in this problem, but I hope it is clear now. So, I

will stop this video here. In the next video, we will continue solving more problems.

Thank you.


