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So, the last lecture, we are talking about quotienting of groups. And I said that when you

have a group, which is its normal subgroup of bigger group G, so H is normal subgroup

of G, then quotienting makes sense. Today, I will make it bit more precise. So, to start

with let us have a group, and any subgroup; A subgroup meaning, a subset of G, which is

group in itself under the same operation, which is defined on G. 

So, what you can do is you can consider, what are called cosets, so that we take any

element in G, and you consider say a H. What is a H by definition? It is a collection of all

the elements of the type a h such that h is in H. So, this is a subset of G. So, this is so

called  left  coset,  a  is  coming  to  the  left.  We are  having  group  operation,  we  are

multiplying a from the left side, so that is left coset. I know what you do, you consider all

left cosets. So, here I am considering a H such that a is in G. So, for two different a in G,

so say a 1, and a 2 different. You may actually have same coset a 1 H, a 2 H, it is quite

possible. 



So, you have this collection of cosets. So, this is set of cosets of G by H, so these are

cosets. And one has to observe that if I take two element, say a, and b, then either a H is

same as b H, or subset a H does not intersect subset b H. So, this intersection is taking

place in G, intersection is happening in G, so that means G can be written as union and

disjoint union, disjoint union of these courses. 

Let us come back to the set of cosets, I will denote it by G mod H it is notation. And on

this G mod H, I try to define group operation. How do I do? I just trying to say that if I

take one element here, this is a coset, another element, which is here it is a coset, I define

it a b H; Then in order to say that all this makes sense. This operation should be well

defined, so that is all is a question, is it well defined, because the choice of a, could be

something  else,  choice  of  b,  could  be  something  else.  So,  choice  of  a  could  be

something, so that a H is same as a dash H, some other choice right.

Similarly, we could have some b dash H, such that b dash H is same as b h, but b is

different from b, b dash is different from b. Then because choice is involved the question

of well  definedness is  certainly there.  And it  is  a proposition that  if  H is  normal,  H

normal subgroup. I hope you define what normal subgroup is normal subgroup is the

one,  for  which  for  every  choice  of  G  in  G,  and  for  every  choice  of  H  in  H,  the

conjugation G and G inverse belongs to H. 

So, if H is normal, then this operation that I have defined, it is well defined. And in that

situation, if you consider set this along with the operation that has been obtained in this

fashion, and it is actually a group. So, star, these star operations actually group operation,

so that is about quotienting. Quotienting has many applications. 
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Let us see some quick examples of quotienting. I have G is equal to Z, integers H is

equal to 2 Z, even integers. Then G mod H is just group of two elements. Group of two

elements, just write as say 0 1. Why am I writing it as 0 1, here 1 plus 1 is 0, why am I

writing like this. Because what are the cosets, cosets would be cosets corresponding to

identity, so this is 2 Z, and then 1 plus 2 Z, these are the cosets. And this called coset

corresponds to 0, this coset corresponds to 1 is a trivial example of quotienting. 

Now, I  will  discuss  some more concepts,  remember  what  is  the purpose,  purpose to

understand  Rubik’s  group,  and  you  solve  Rubik’s  group.  Some  quotienting  will  be

required there, and some understanding of generators and relations expressing a group, in

terms of generators and relations will also be required there.

So, let us see few more things homomorphisms. So, what is the meaning homomorphism

of the same type right. So, suppose I have a group G, I have another group H, it is a map

between these function from G to H, function f I called homomorphism. If whenever I

have two element say a and b here in G, they actually map to the a into b actually maps

to f a f b.

What is this? This is the group law in H. What is this? This is group law in G. And so

what is being said that is f of a b is same as f of a f of b. Image of the product is product

of  images.  By  product  what  do  what  do  we  mean,  we  mean  the  group  operation,

whichever is there in the relevant group H and G. And one of the consequences of this is



that identity of G has to go to identity of H. Why, because you put a and b both to be

identity,  identity  of  G,  and  then  you  see  what  happens.  So,  these  maps  are  called

homomorphisms.
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What  are  the examples?  We have seen some of them, you remember signature map.

What was that from symmetry group, symmetry group on n letters to say the group 0 1. 0

1 group is what, we have seen it is just Z mod 2 Z odd and even odd plus odd is even.

So,  permutation  sigma  goes  to  signature  of  sigma.  I  hope  we  recall  from previous

lectures that for a permutation we can assign, notion of signature. What is that every

permutation is a product of transpose, transpose meaning two elements getting swapped.

So, if there are odd number of transpose we say the signature is 1 (Refer Time: 12:55)

even  number  of  transpose,  which  are  involved  in  expressing  sigma,  then  you  have

signature to be 0.

So, if  you have sigma n theta,  which are two permutations,  the signature of them is

actually signature of sigma plus signature of theta, and this signature is this addition is

actually happening in Z mod 2 Z, so that is one example of homomorphisms. So, you can

see this, this is precisely the defining property of homomorphisms.

Another example I can take again quite simple one. I take integers, and then I take cyclic

group. What is a cyclic group this one, by definition this is I say in terms of generator



and relations, it is generated by an element a such that a to the power n is 1. So, what are

the elements here, elements are 1 identity that is a, a square, and so on up to a to the

power n minus 1. So, these n elements are there, and product is formal. So, a to the

power i a to the power j, it is simply a to the power i plus j, and this i plus j is happening

mod n yeah.

So, I just take say and then you are going to say r I map it to r mod n, so here I would say

a to the power r mod n. So, whatever is the remainder after  dividing r by n, so that

remainder is going to be from 0 to n minus 1, and that as a power of a (Refer Time:

15:23) and that is a homomorphism. So, it is easy to check that let me call this map f, f is

a homomorphism.
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Some more examples of homomorphism, I will mention that is interesting one. You can

see the real numbers with 0 removed, and then you take the ones, which are positive, or

in other words what you are taking are simply positive real numbers. So, positive real

numbers together with usually multiplication form a group.

And then you take real numbers together with addition. So, from positive real numbers,

so I would say R strictly positive. So, this is R strictly positive so, R strictly positive.

Together  with multiplication,  just  to indicate  verification,  and then R, the addition.  I

define this map, when you have known this map for quite long time log to the base let

me just say 10 for simplicity. So, a positive real goes to log of x, and the base is 10.



You remember from your school days, at log of x y is same as log of x plus log of y that

creation we have seen what was that,  it  just  said that  this  homomorphism condition,

which is satisfied. So, this map log say to the base 10 is a homomorphism, does not

matter what base is log to any base is a homomorphism. Here it is multiplication and

here it is addition, so that is very interesting example of homomorphism.

And in fact, this homomorphism is invertible. How is that, given any real number, does

not matter positive or negative or 0, any given any real number, I can raise it to the

power of y. What we called if you remember during this school days, antilog, or it is also

call it exponent exponential, exponential with respect to 10. So, for log, we have antilog

map,  and  it  combines  well,  it  is  a  identity.  So,  such  homomorphisms,  which  are

invertible,  they  are  called  isomorphism.  So,  invertible  homomorphisms  are  called

isomorphisms definition yeah.
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Let us see some more examples of homomorphisms. You consider this set what is that, n

by n matrices with real entries with entries in. Is this a group, when you have to tell the

operation under addition, it  is a group under multiplication it is not a group, because

there are so many matrices, which are not invertible under multiplication. So, what I do, I

consider those matrices with entries are with entries in R, which have a multiplicative

inverse. There that forms a group that forms a group under matrix multiplication. What is



the identity of this group? Like that identity matrix; the matrix, which has all diagonal

entries as 1, and all other entries as 0.

So, from this matrix to real numbers with multiplication; so, when I take multiplication, I

have  to  remove  0.  So,  these  are  non-zero  real  numbers.  I  have  to  remove  0  with

multiplication. Here is a map that we have seen in the school, which is a homomorphism,

can you guess it, given any matrix I am going to associate it to scalar determinant. You

take a matrix  A; you associate to it  the determinant  of this matrix.  And then as you

recalled, determinant of A into B is same as determinant of A times, determinant of B.

What is it, homomorphism, so determinant is a homomorphism.

Is this  may have an isomorphism, that  means does there exist  a map. In the reverse

direction, to which if I compose determinant I get identity, no because there could be two

different matrices with the same determinant; So, it is not an isomorphism, because two

different matrices of same determinate may exist do exist, so that is not an isomorphism. 
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Let us see one more example. You remember the direct product of groups, what is it, it is

0 0, 1 0, 0 1, 1 1, and then you consider V 4, which I wrote as 1 f x, f y, r pi. When I am

writing like this, I want to emphasize that this is group of symmetries of a rectangle. So,

one can actually give an isomorphism from here to here, from Z 2 cross Z 2 to V 4. So,

of course, (Refer Time: 26:14) is a isomorphism 0 0 has to go to 1. What about the other

elements, there are many isomorphisms from Z 2 cross Z 2 to V 4, maybe that is an



assignment question. So, how many isomorphisms are there? So, after this discussion on

isomorphisms and the quotienting of groups homomorphisms.
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Let me quickly discuss one more concept, which we are going to see in the Rubik’s cube

case, Cayley graph of a group. So, given a group, and a subset of it, which is generating

set, I can think of it is graph, the Cayley graph of the group. So, what kind of graph is

this? So, first of all what a graph is, graph is any pictorial representation, where there are

several  nodes,  there  are  several  vertices,  and they  are  connected  to  each other  by  a

certain rule something. So, there are nodes, these nodes we calls, so call them vertices,

and then these are edges.

So, in a Cayley graph, what are the nodes? Nodes are actually all the elements, so I am

assuming group is finite. So, all the elements, which are there in the group, I take them as

nodes. Nodes are labeled by G and what about edges. So, to define edges, I have to

specify that I am writing, I am constructing the Cayley graph with respect to what set of

generators, set of generators.

So, what do what we do, suppose these are nodes, these are elements of G. Then here is a

element a, here is an element b. I would connect a to b, so edge edges are. So, we drew

an edge between a and b, if either a inverse b belongs to the generating set, or b inverse a

belongs to the generating set. So, if one of them belongs to the generating set, then you

connect the edges.
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Let us see with the example. And your example is a favorite example of say D 4. So, I

remember, I hope you also remember that that for D 4, one of the generating sets is r

comma f. This is rotation by 90 degree, and this was a (Refer Time: 31:27) about y axis,

this is rotation by 90 degree. So, D 4 is generated by this r and f.

And how to draw the Cayley graph so, what are the elements in D, I have identity, I have

r, I  have r square,  I  have r cube.  So, one will  get connected to r, because r times 1

inverse.  What  are  the conditions,  the  conditions  were a  inverse b belongs to  s,  or  b

inverse a belongs to s, these were the conditions. So, here 1 inverse r belongs to s. So, I

am connecting similarly, r belongs to s, r belongs to s, and here also I can make these

connections. So, these are four nodes right. And then one is also connected to f.

And then what are other elements, f is there, f r is there as a node, f r square is there as a

node f r cube. So, these are nodes. And I am connecting f with f r, because f inverse f r

like belongs to s that is r. And similarly, I connect this, I connect this, I connect this, I

also connect r and f r, and I also connect, so I am connect connecting r and f r, because f r

r inverse, they belongs to the set s. 

And similarly, I have to connect r square with f r square, and r cube with f r cube. You

realize what we have obtained, it is actually cube. So, the Cayley graph of D 4 is a cube,

where if you want I can label like 1, r, r square, r cube, and here f, f r, f r square, f r cube.



So, this is a Cayley graph of D 4. So, in fact, whenever there is permutation, whenever

there is a action, which is happening.

When one try to identify what are the basic moves, those basic moves you can think of as

generating sets. And then for the whole game, for the whole sequence of permutations,

one can create a Cayley graph, and traversing Cayley graph is a fun. There are many

other  situations,  where  drawing  Cayley  graphs  is  important.  One  subject  area  of

mathematics  is  what  is  called  growth  of  groups,  which  concerns  how these  Cayley

graphs grow with respect to a set of generators, and what is the effect of choice of set of

generators on this growth. 

So, if you want, I will give name of the person Michael Gromov, who is one of the

pioneers of this area. But, we are not going to study, and growth of groups in this course,

we have just interested in various applications of groups. And in particular in some of the

situations graph may come, it would be great fun for you to draw a graph of say 15

puzzle, or to draw a graph of Rubik’s cube. Can you imagine, how large will the graph of

Rubik’s cube be, any idea? 1 million, 1 billion, may be more; you will see that we are

going  to  play  with  Rubik’s  cube  using  software,  which  is  called  GAP  -  Groups

Algorithms and Programming. You have to watch keep enjoy.

Thank you.


