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Representing abstract groups

Hello. So during previous lectures, we have seen a couple of things.
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We saw Rubik’s group, we saw symmetries of wallpaper. So, what was Rubik’s group, it

was just group of all permutations, all possible states of Rubik’s cube. So, in that sense,

Rubik’s group or the Rubik’s cube is very tangible representation of a group of Rubik’s

cube.You can touch it, you can feel it, and group is right there in your hand, all possible 4

into 10 to the power 19 states, more than that, they are just in your hand right, or the

group of  symmetries  of  wallpaper. Again  this  picture  is  representing  something it  is

representing  a  group. This toy is  again representing  something that  is  representing a

group, so that is something.

So, Rubik’s group is a tangible object that occurs as a group naturally. So, one of course,

has  to  understand  what  is  the  meaning  of  occurs,  occurs  in  the  sense  that  the

permutations, which are there all possible permutations, they form a group, but in one



single toy, you can see all possible permutations. Similarly, symmetries of wallpapers

given a wallpaper pattern given say one tile, you have so many symmetries.

So, for example, rotation, reflection, and other things that I mentioned last time, glide

reflection all these things are there,  and just through one picture you can understand

about a group. So, these are concrete examples of group. So, concrete objects, these are

concrete objects that represent a group, so concrete objects there. And group as we know

is an abstract structure.

Through  these  examples,  through  the  example  of  wallpaper  symmetry,  through  the

example of a Rubik’s group that abstract group gets a meaning, it gets it gets represented

in a  where if  you say, real  life  situation.  So, for  us  it  is  always good,  if  you could

represent a given abstract group, in some meaningful fashion. So, here the meaningful

fashion was permutation, and here the meaningful representation was all this rotation,

reflection, glide reflection, all these things.

So, here is something quite interesting. Any abstract group can be understood in terms of

permutations, any abstract group can be understood terms of matrices, I hope you recall

that or rotation and reflection, yesterday we are talking about matrices. So, these two key

words, permutations and matrices, they are quite concrete right. And the statement is that

any abstract group, what is abstract group, any group that satisfies all those properties in

the definition of group, associated key existence of identity, existence of inverse.

So, any abstract group actually can be thought of as group of permutations, any abstract

group can be thought of as group of matrices, and that is quite relieving that is quite

interesting  thing.  So,  statement  is,  when you have  an  abstract  group,  then  it  can  be

thought of as if it is sitting inside S n a suitable permutation group, and that is called

Calyley’s theorem.
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So, what is that how can we realize. And in group as if it is sitting inside, S n. So, here is

this idea you have a group, and to this group I want to associate some permutation S n.

So,  first  question,  what  n,  should  we  take,  so  here  I  take  n,  which  is  same  as  the

cardinality of G, number of elements of G.

So, here I am taking finite group. So, here in this previous slide, it should have been

finite group. All the for infinite groups also one can makes in your statement, but the

actually finite, because you want to get S n. So, how do I associate a permutation to an

abstract element to a given element of group g that is not very difficult, let me just say

that sigma goes g goes to a permutation sigma g, a permutation is of n symbols.

So, what do I do how do I define sigma. So, sigma g is going to be a permutation that is a

bijection on G. And how do you give bijection on group using an element, well one way

is you just permute in this fashion, you just multiply g from the left side, and it is clear

that as a set is set map, sigma g is a bijection. How do we see that is just cancellation

property, just left cancellation? So, if I have a sigma g say h 1, and sigma g h 2, that

means I am having g h 1, g h 2, both are equal. Existence of inverse allows me to cancel

these, so g inverse g h 1 is same as g inverse g h 2. And therefore h 1 is h 2, and that

means, sigma g is a one-one map.

So, here is a one-one map, which goes from a set of finite set to itself. So, it has to be

onto as well, there is a one-one onto map that means, the permutation right, any one-one



onto  map;  so  bijection,  bijection  precisely  permutation.  So,  this  sigma g  is  actually

permutation.

And you can see that this is a group of a morphism, this kind of assignment is a group

homomorphism, not very difficult to see. So, therefore, this is a homomorphism, and I

came that this is a injection. So, why should it be injection? So, just check that if g 1 is so

if sigma g 1 is same as sigma g 2, then you just need to check that g 1 is equal to g 2 that

is not very difficult to make out, so that’s all. So, what is the conclusion, conclusion is

that every group, every abstract group can be thought of as a group of permutations.

So secondly, for n equal to size of g you can,  but then in some cases, you can also

optimize this, you can also reduce this n. So, this is just one algorithm, one way to see

group as a subgroup of permutations.  So,  everything therefore,  can be thought  of as

permutation, so that is the message. Message is every element of a group can be thought

of as a permutation.
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And now, I  am making another  statement  namely, every  element  of  a  group can be

thought of as a matrix. So, how to see that not very difficult? So, statement is every

element of a group, can be thought of as a matrix. Not very difficult when even think of

an element as a permutation, you can also think of it as permutation matrix.



So,  what  is  permutation  matrix?  Well,  you take  identity  matrix,  just  I  am giving an

illustration of 3 by 3 case, and then what do you do, just permute rows or columns. So,

here let us permute rows, so I have this is 0 1 0, 0 0 1, 1 0 0. So, what happens here? If I

multiply this matrix to x axis, so I am taking x, y, z, three axis; so x axis corresponds to 1

0 0, what happens you know, so when I multiply this, I get 0, I multiply this, I get 0, I

multiply this 1 last one, I get 1. So, here x axis goes to z axis, what happens, when I do

the same calculation for y axis; so x axis goes to z axis, and for y axis what happens, so I

get 1 here, and I get 0 here, I get 0 here, so matrix multiplication. So, y axis goes to x

axis.

And what about z axis, 0 1 0, 0 0 1, 1 0 0, so I am looking at z axis, 0 0 1, and when I

multiply what I get, I get 0 here, I get 1 here, and I get 0 here. So, z axis goes to y axis.

So, z axis goes to y axis. So, it is a permutation, x goes to z goes to y. So, x z y, and then

y  comes  back  to  x.  So,  this  matrix  is  actually  representing  a  permutation.  What  is

happening, first row first row of this is going to z last row, third second row is going to

first row, and then third row is going to second row, third row is going to second row, it

is z is going to y. So, this matrix is actually representing a permutation. So, these such

matrices, which are obtained after permuting rows or say columns of identity matrix,

they  are  called  permutation  matrices.  So,  they  are  obtained  by  permuting  rows  or

columns of identity matrix. So, you can apply a given permutation on rows or columns.
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So, here is thing, I can therefore, give a map from S n to group of matrices over a field

say complex numbers. So, C or C is the set of a field of complex numbers. And G L n C

is n by n matrices, with which are invertible. Those n by n matrices, which are invertible,

and it forms a group; so all permutation matrices being permutation of identity matrix.

So,  permutation  of  rows  or  columns,  they  determinant  is  either  plus  1  or  minus  1,

because you will be doing that permutation like swapping of rows or columns, either

even number of times or odd number of times. So, since the determinant is 1, matrix is

invertible.

So, any sigma, any permutation can be performed on say rows of identity matrix, and

therefore you get let  me just call it  M sigma, M sigma is corresponding permutation

matrix. And therefore, this map is there, and you have to check that this map this map is

a  homomorphism.  This  is  a  homomorphism,  you  have  to  check,  whether  it  is

homomorphism. When sigma is permuted, sigma permutes n identity element as columns

or rows, so that is the question ok. So, for what notion of permutation matrices, whether

it is in terms of rows, or in terms of columns, this is a homomorphism nevertheless.

So, you have a homomorphism from here to here, it is actually injected homomorphism.

So, any group sits inside S n, in S n sits inside G L n over a field, say complex numbers.

Therefore, every abstract group can be thought of as a permutation, and every abstract

group can also be thought of as a matrix. So, matrices and permutations, they are very

concrete examples of elements of a group, so that is how these things are useful. So, I am

representing every abstract element as a permutation, I am representing every abstract

element as a matrix, so that is quite possible.
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So,  with  that  what  becomes  important  are  matrix  groups.  What  is  the  advantage  of

considering elements as the matrices, elements of abstract group as matrices? When I

have an abstract group, there is no structure to this element G, G is atomic. But, when I

think of a matrix, so this is abstract, this is matrix. I can perform various operations of

matrix itself. For example, I can compute its determinant, I can compute its trace, I can

add up all the entries of it, so many things that I can do with matrix, but within abstract

element you cannot.

So, in some cases, it might be useful to think of an abstract group as actually matrix

groups. So, what are the examples of matrix groups? There are plenty of them, and in

fact, it is a whole theory of matrix groups, they can be thought of as what are called

continuous groups, or say lie groups, or in terms of algebraic geometry, or in terms of

polynomial operations, you want to understand them, what are called algebraic groups,

these  are  very  very  rich  theory  of  mathematics  having  their  own  special  case  in

mathematics. We are not going to talk about them, but we are going to just give an give

some examples of linear groups.

So, what are the examples, I am saying first example that you already know of G L n C,

this called general linear group of order n. And then S L n C, what is the definition of S L

n C, is those matrices, those elements in general linear group, whose determinant is 1.

So,  elements  have  determinant  1  form  a  group.  So,  you  take  2  2  matrices,  whose



determinant  is  1,  the  product  is  again  determinant  1,  and  inverse  of  matrix  whose

determinant is 1 is again having determinant 1, so that forms a group called special linear

group.

Few more groups, this group is O n C. What is this group, this group is all those matrices

in G L n C, for which M M transpose is identity matrix n by n identity matrix. So, here is

an observation about such elements. Observation is that if you pick an element from O n

C,  then  its  determinant  is  either  plus  1  or  minus  1,  this  is  because  determinant  of

transpose of matrix is same as determinant of matrix, and therefore determinant of M

square is just 1 ok.

So, this group is called orthogonal group. And in fact, there is a geometric interpretation

of this, in terms of isometrics. I am not going to say all this in detail, but this group can

also be thought of and in fact, general version of this is closely related to what is called

isometric group for quadratic forms. It is quite interesting object has its own theory ok.

So, elements of M elements of O n C elements of orthogonal group, therefore can be

categorized in two types, the ones which have determinant plus 1, and once which have

determinant minus 1. So, the ones, which have determinant plus 1 are called special the

collection is called special orthogonal group.
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So, S O n c, this is all those elements, in O n, for which determinant, determinant is 1,

and this is special  orthogonal group There is a reason behind calling them special,  I

would come to that in a minute. In fact, one particular group, which is S O n, over reals

is what we are going to understand in later lectures in much detail. And that is going to

be very nice application of group actions. Set a remark, there is this remark, and quite

often C is not important, C can be replaced by other fields, say reals, or rationals, or what

are called finite fields.  Fields, which have finitely many elements,  or there are some

fields, which have a number theoretic significance, say p-adic fields, or local fields, there

is so many fields. So, you can replace them by different fields.

And particular interest is there, if field is a like a field numbers, then say in this case you

have say S O n R that has particular significance you can geometrically see this again,

and it occurs as group of rotations of sphere in R n. So, what is sphere in R 3, the usually

sphere that we imagine. What is sphere in R 2, circle the usual circle, say of sphere or

does not matter, you can say units sphere, which has radius 1, So, that is of particular

importance. Let me try to illustrate it for n is equal to 2 case that is very easy illustration
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So, what is the condition there? S O 2 R or another notation is simply call it S O 2, or

you just call it S O 2 comma R. So, what is the condition? So, condition is S O 2 is

collection of those elements, so M in let me write this name G L 2, and I am having, S O



2 R, G L 2 R, the field is that of reals such that M M transpose is 2 by 2 identity matrix,

and determinant of M is 1.

So, let us try to understand, what are all such matrices? So, suppose I take a matrix a b c

d, which is lying here. So, what is the property of that property is at a b c d, when I

multiply with its transpose a c b d, it  is going to have determine,  it  is going to have

product  to  be  2 by  2 identity  matrix.  So,  what  conditions  do I  get  from this.  So,  I

multiply,  I  get  a  square  plus  b  square  here,  and  here  I  get  c  square  plus  d  square,

therefore both the elements are a square plus b square as well as c square plus b square

are 1, cos square theta plus sin square theta. Maybe in those terms you try to understand,

and that is how rotations come into picture. What are what are other entries? So, here I

have got ac plus bd, which has to be 0, and again here I get ac plus bd.

So, what are the conditions? Conditions are a square plus b square is equal to c square

plus d square is the identity, ac plus bd is 0, and there is one more quantity, which is ad

minus bc is a determinant right. Determinant of this matrix, which is ad minus bc that is

1. So, this is what I get. So, this is a condition for a b c d. So, one can think of a as sin of

something, or cos of something, something cos of theta, so b will be sin theta, and let me

think  of  c  as  a  cos  alpha,  so  then  d  will  be  same  sin  alpha  and  what  about  other

conditions.

So, when there are ac plus bd, so ac plus bd is cos theta cos alpha plus sin theta sin alpha,

and that is 0. And what about other thing, ad minus bc that is cos theta sin alpha minus,

so ac ad minus bc is sin theta cos alpha that is also 0 right. So, what is this, that means

cos of theta minus alpha is 0. And from here, I get that sin of theta minus alpha oh sorry

this is 1, I just erase this, this is 1 the determinant. This is 1, so sin of theta minus alpha is

1.

And when I make all these calculations I eventually, when I saw you all this, what I get

is that sin alpha is cos theta. And eventually what I would get is that your matrix a b c d

is essentially cos theta, and d is again cos theta something like minus sin theta sin theta,

and that is rotation matrix. So, these elements can be thought of as rotation.  So, this

condition,  these  conditions  imply  rotation,  and  even  in  the  higher  dimension,  these

conditions indeed imply rotation; so this rotation, which is happening.
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So, in fact, you can think of rotation in higher dimensions as well. And the remark like

this  rotation matrix,  cos theta  minus sin theta  sin theta  cos theta,  this  matrix  can be

diagonalized over c complex numbers, just treat them as complex entries. And what you

have is e to the power 2 pi i theta e to the power minus 2 pi i theta 0 0. That means, these

two matrices are conjugate to each other, provided you allow conjugation by complex

numbers, conjugation by entries, by vertices, which have entries in complex numbers.

So, in fact, rotation in R 2 can be thought of as complex multiplication. How is that I can

take say cos theta plus i sin theta. And then I can think of x plus i y, for R 3 element, in R

2 x comma y is being identified with x plus i y.

So, when I multiply, what do I get, I get for the real entry x cos theta minus y sin theta

plus the complex entry is y cos theta plus x sin theta, which is precisely what this matrix

does. So, complex multiplication can be thought of as rotation. We are will talk about

higher dimension analog of complex multiplication in next lecture. And that is the case

of quarter re-unique multiplication quarter (Refer Time: 38:45) are certain objects, and

you are going to learn all that in next lecture. And those quarter means are helpful in the

in the understanding rotation in not in R 2, but R 3.

So, what we have seen today that abstract elements in group can be can be thought of as

matrices as permutations, they are useful in other things like rotations, and all that into

the connection with complex multiplication. Next time, we are going to talk about what



is called a representation in the formal way, which is an attempt to make every element

as a matrix. And there are certain applications, certain advantages of representations. We

are going to talk about mathematical representations next time. But, as of now I am sure,

you  have  understood  that  groups  can  be  represented  in  various  forms,  in  forms  of

puzzles, in forms of some permutation games, in form of some symmetric considerations

symmetric considerations, I will show you all those symmetric objects.

So, to know more about representations, watch for the next video.

Thank you.


