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Okay, so, in this video I will continue my applications of Sylow 

theorems and problems based on Sylow theorems. But before 

that let me do actually a couple of small results that don’t use 

Sylow theorem. But, they are useful applications for group 

actions. So, let’s say this is a problem I want to solve today. 
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Let’s say G is a group and p is a prime number and let’s say G 

has order pe. Okay, in other words order of G is a power of p and 

let’s say e is at least 1. Okay,  show that the center of G is non-

trivial. Okay so, I will explain what this means.  

 

 

So recall the center of G, which is denoted by Z(G), is all 

elements of G which commute with all other elements. So, the 

problem is asking us to show it is non-trivial. 

 

So, we want to show order of Z(G) is at least 2. Okay, so 

remember this need not be the case. I will only say this, you can 

check this on your own. If G is S3 for example, the symmetric 

group on 3 letters, center is thriven. Of course, the symmetric 



group doesn’t have this property that its order is a prime power. 

So, if you have this, prime power groups have non-trivial order. 

So, for this we consider the action of G on itself by conjugation. 

 

Okay, so this is something we have seen before. So, in 

particular, we look at class equation. What is the class equation? 

It says that cardinality of, order of G, which I am assuming is Pe, 

is the sum of orders of conjugacy classes. But remember one 

conjugacy class is just {e}, this is the orbit of e. Conjugacy 

classes are orbits of elements under conjugation action. So, the 

class equation looks like, pe=1+|C2|+|C3|+…+|Ck|.  

 

(Refer Slide Time 02:47) 

Now we further apply group actions. So, what does counting 

formula say? Counting formula says order of G is stabilizer of 

some element times orbit of that element. Again this is pe so we 

can certainly say that the size of a conjugacy class or size of an 

element, orbit of an element divides pe. But what are the 

numbers that divide pe? So, orbit of g must have size pi for i = 0, 

1, 2 up to e, it can be zero, of course.   

 

Now let’s go back to the conjugacy class equation. You have 

1+|C2|+|C3|+…+|Ck|; using the counting formula I can say that, 

each of these is a power of p even 1 is a power of p. So, this is 

some pa2 +pa3+…+pak , correct. 
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Suppose a2 is positive, a3 is positive, ak is positive, suppose 

they are all positive. Then, pe will be 1+pa2 +pa3+…+pak , and 

this whole thing is divisible by p, because if they are all positive.  

 

 

That means p divides 1 because p divides pe, p divides this sum, 

so p divides their difference which is 1. But this is absurd. 

 

But, where did we go wrong? We went wrong in assuming that 

all the ais are positive. So, some ai is equal to 0. So, say a2 is 0. 

That means what? |C2| =1. 
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But what is C2? So a2 remember is the, |C2| is pa2, a2=0. So, |C2| 

is 1. This implies C2 which is the conjugacy class or orbit of 

some element g has only one element. But, what is orbit of g? It 

is all elements like this. But of course orbit definitely contains g. 

But that means aga-1 is g for all a in G. That means, ag = ga for 

all a in G;  that means a belongs to the center. Sorry, this is not 

‘a’ that I can conclude is in the center, a is varying so I can 

conclude g is in the center and remember g is different from e. 
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Because I am taking the second thing that appears in the class 

equation, these are distinct orbits, e already is taken care of 

when we wrote 1. So C2 being the order of g and g must be 



different from e. So we have produced an element g in the center 

which is different from e. So that concludes that the center is 

non-trivial. Okay, so that solves the problem. 
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So, if you have a group whose order is prime power, such 

groups are called p-groups, we have shown that the center is 

non-trivial. So, p groups have non-trivial center.  

 

Now I am going to consider a special kind of p-group. Suppose 

G has order p or p2, where p is prime then G is abelian. So it is 

not true that p-groups are abelian, all we know is that their 

center is non-trivial. So, there are non-identity elements in the 

center. But if it is either p or p2 the center is everything, in other 

words is an abelian.  

 

So, if |G|=p then G is actually a cyclic group, implies G is 

abelian. There is nothing new here we have seen this before. 
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So assume |G|=p2. So we want to show G is abelian. 

Equivalently we want to show Z (G) = G. Note that by the 

previous problem we know that the center is non-trivial. So, 

center must be bigger than just the identity. But now we want to 

show that it is all of G.  

 

What are the possibilities for the center? So, center is a subgroup 



(e) ≤ Z (G) ≤ G, which is between (e) and G. By the previous 

problem it is not equal to (e), so it is either G or it is strictly 

between. So suppose, if possible, Z G) ≠ G. 

 

 

So, you should think for a minute if it is not clear to you, why 

the center being all of G implies G is abelian. This is just the 

definition of what a center is.  

 

So suppose the center is not equal to G. So choose x ϵ G, x not 

in the center Z(G), right. If x is not in the center, if center is not 

all of G there must be something that is not in the center. Let’s 

consider the conjugacy class of x, that means C(x) = {gxg-1 | g ϵ 

G}. Okay so, this is called the centralizer of x, recall, and it is a 

subgroup. And I will let you do that easily, check that it is a 

subgroup of G. Because identity certainly has this property, if 

two things have that property their product has this property and 

if something has this property inverse also has this property. 
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Now, this is easy check. It is also easy to check that center will 

always be contained in the centralizer, because center, remember 

is all elements which commute with everything. So, if 

something commutes with, sorry this is actually, I made a 

mistake here so, actually let me erase all this, I got confused. I 

am not looking at the conjugacy class. I’m looking at the 

centralizer.  

 

 



 

Consider the centralizer of x, I will call it C(x). This is by 

definition {g ϵ G| gxg-1 =x}. Okay so, this is a subgroup of G 

and this contains the center Z(G). That is what I want to say. 

Why is this? This is all group elements which commute with 

everything. C(x) is the group elements which commute with x 

so, Z (G) contains C(x). So, what do we have?  

 

We have (e), we have Z (G), we have C(x), we have G. The 

reason we need p2 is this, so this is order 1, this we are assuming 

is order p because it is strictly between G and ZG and this is p2 

and C(x). 
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Remember, C(x) contains x because x certainly has this 

property: xxx-1 is x. So, Z(G) and Z(G) does not contain x, that 

is our assumption. So this implies Z(G) is contained but not 

equal to centralizer. So, this must be p2. 

 

 

 

That means, so C(x) = G, all of G itself,  that means g x = x g for 

all g ϵ G right, that is the centralizer. It is all elements which 

have g x = x g, but that is all of G, so g x = x g for all G.  

 

But this in turn means that x ϵ Z (G), this is a contradiction right, 

because we chose x to be not in Z (G). So this shows that any 

group of order p2 or any group of order p is abelian. 
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So, now using these two facts which do not require Sylow 

theorems at all, these two problems, I am going to do a third 

problem which does use Sylow theorem.  

 

So, let’s say G is a finite group and p divides |G| and as always p 

is a prime number. Okay, in fact, suppose that pe divides |G| then 

G has a subgroup of order pe. Okay so this is the problem.  

 

This looks very much like first Sylow theorem but with some 

difference, the first Sylow theorem is the key statement we will 

use but we have to do some more work because the first Sylow 

theorem says that, you take the largest power of p that divides 

|G| then there is a subgroup of that order. Here, I am not 

assuming that p^e is the largest power. So, how do we do this? 

So, first without loss of the generality we can assume G is a p-

group, that is |G| =pn.  
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Why is this? Meaning why can we assume this? So, write G as 

some, I think maybe I should not use e here. Let’s say, suppose 

G is a finite group and pi divides G then G has a subgroup power 

of pi. 
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And here I can assume that I claim this. So, write like this, like 

we do in the Sylow theorem, so p does not divide m. Sylow I 

implies G has a subgroup order pe, say H is the subgroup of G of 

pe . Now, if  i ≤ e, if we show, take i ≤ e, if we show H has a 

subgroup of order i, then G also has a subgroup right, the same 

subgroup which is the subgroup of H is also a subgroup of order 

pi for G also. So, it’s enough to show that H contains a subgroup 

of order pi. So, we can restrict our attention and this, in order to 

make this assumption we need the Sylow theorem, in the rest of 

the proof we do not need. So Sylow theorem is needed for this 

reason. 
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So, assume now that G is, we can from now on assume |G|=pe 

and i ≤ e, we want to show G has a subgroup of order pi.  

 

Okay, just to quickly recap why we can make this assumption: G 

need not be a p-group but it will have, its order will decompose 

like this, Sylow I says that G has a subgroup of order pe and if 

you prove the problem for that subgroup, we have solved the 

problem for the given subgroup, given group G. So we might as 

well assume that G is a group of order pe.  

 

Now by a corollary of first Sylow theorem, we can assume that. 

No, not corollary of the first Sylow theorem, by the first 

problem of this video, the center of the group is non-trivial, 

right. We have shown that a p-group has non-trivial center. So, 

take, it has non identity element. So I can always choose an 

element, let’s call this x, of the center such that order of (x) = p. 



 

 

And in order to do this I used the corollary to the first Sylow 

theorem. Remember there is an element of the center which is 

not identity, order of the center is also a power of p, in other 

words, the center is also a p-group because order of the center 

divides pe. So, the order of the center is also a power of p. So an 

element will have order a power of p. So, by taking a suitable 

power of it, we can assume that it has order p. So look at 

Corollary to Sylow I that we have done in that video for 

producing such an x and now let H be the subgroup. 

 

 

So I am starting with a new notation here. Whatever I called 

earlier H is gone now so, G is a group of order pe and H be the 

subgroup generated by x. So, H is the subgroup generated by x 

so |H| = p, of course, because order of x is p. 
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More than that, H is in fact normal in G. Why is that? Because x 

is a central element, x is in the center. So how do you show 

something is normal? Take an arbitrary group element g and an 

arbitrary ring element, it will be some xn and multiply by g-1. 

But remember x is in the center right, we have chosen an 

element x of the center. So, xn also is in the center so xn gg-1 = 

xn, this is of course in H. So H is normal in G. 
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So, in particular we can consider the quotient group G/H. Right, 

if you have a normal subgroup of a group you can consider the 

quotient group and look at the map from G to G/H, the natural 

map so, g going to the coset gH.  

 

What is the cardinality of, order of |G/H|? By the counting 

formula this is the ratio, pe this is p so, so this is pe-1, okay. Now, 

by induction, so I am going to basically solve this problem by 

induction. So we use induction. |G/H| = pe-1 which is less than  

pe.  

 

So, we can assume by induction that G/H has a subgroup, say 

K1, such that the |K1| = pi-1. So, I am going to construct, my goal 

is to construct a subgroup of order pi for G. 
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I am going to construct, I am going to use induction hypothesis 

to suppose that G/H, which is a group of order less than pe has a 

group of order, subgroup of order pi-1.  

 

 

So, what is the picture: we have G, G/H, K1, which is the 

subgroup, this has order pi-1, this has order pe-1, this has order pe. 

How do I get, so this is the picture how do I get the K that I we 

want, the group of order subgroup of order pi? Okay so, 

naturally your guess would be, I take φ-1 (K1),  call that K. 

 



 

So, let K be phi inverse (K1). It is an easy exercise that I may 

have discussed when I talked about homomorphisms,  inverse 

image of a subgroup is a subgroup. So, K is a subgroup of G. 

We claim that K is the desired subgroup, we claim that |K|=p i.  

 

So remember our goal is to construct, given than G has order pe 

and i ≤ e, we want to show G has a subgroup of order pi. We use 

induction and go to a smaller group which is G/H and apply 

induction to that to guarantee that there is a K1 for, which is a 

subgroup of G/H which has order pi-1. 
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And I am simply taking the inverse image, K will be the inverse 

image. So, it is a subgroup, that is trivial. We want to show that 

in fact, its order is pi. So, why is that? This is very easy now. So 

remember, we have G to G/H, K is here and K to K1, we have a 

map. 
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Because K, this is phi, this is phi restricted K. And because K is 

the inverse image of K1, K maps to K1. So, what is the kernel of 

this map? Remember what is the kernel of phi first? Kernel of 

phi is of course H, right. kernel is the inverse image of identity 

element. So K1 contains the identity element, so its inverse 

image will contain all of the kernel, so K contains H. We have 



this also, so kernel of phi restricted to K, I claim, is also H. 

Because how can something go to 0 here or the identity element 

here? 

 

 

 

If it goes to identity element here, it already goes to identity 

element here, so it is in H. So, if something is in H it is already 

in K, so kernel of this is H. And of course phi restricted to K is 

also onto, it is onto right, because phi itself is onto. So, this is 

also onto.  

 

So forget this now, focus your attention on this map and apply 

counting formula. It says that, or the first isomorphism theorem 

really, first isomorphism theorem says that K mod kernel of this 

map, which I am denoting by phi restricted to K, is isomorphic 

to K1. 

 

But that is same as, because kernel is H, this implies that now 

the counting formula says that |K| by |H| is |K1|, which remember 

is pi-1. So |K| = pi-1  times |H|, but the order of H is p, okay. 

  

(Refer Slide Time27:04) 

So thus we have produced a subgroup K of G of order pi. Okay, 

remember this was the problem. Problem was to show that if 

you have a group G such that pi divides the order of  G,  then 

there is a subgroup of order pi. So now, first using the first 

Sylow theorem, we have reduced to the case that G has order p 

power e; that was the crucial restriction and that needed Sylow’s 



first theorem. 

 

Then we used the fact that, for such p-groups the center is non-

trivial and to get hold of this x which made all the proof work. 

And then, we go to G mod the subgroup generated by x, use 

induction to show that that has the right subgroup and we take 

the inverse image and then a quick application of first 

isomorphism theorem and counting formula says that the inverse 

image has the desired property.  So, this proves the problem and 

this completes the video and the course. 

 

I wanted to cover the standard things that are done in a group 

theory course: so we have done Lagrange’s theorem, cosets, 

quotient groups, Cauchy’s theorem, group actions which is the 

most important topic here and using that we have done the 

Sylow theorems. So this is the material that is covered in any 

standard course in group theory and if you understand this 

course fully, then you know the group theory that is expected in 

a B.Sc or a M.Sc course. Thank you. 
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