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So, let us continue now. In the previous two videos we looked at 

the first and the second Sylow theorems. The first one said that a 

group, a finite group G has a Sylow p-subgroup, if p divides the 

order of the group. Second Sylow theorem said that any two 

Sylow p-subgroups are conjugate.  
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The third Sylow theorem says something about the number of 

Sylow p-subgroups. So let us prove this, let us first state this.  

 

 

Let G be a finite group. The set up is as in the first two Sylow 

theorems. So, let G be a finite group and let p be a  prime that 

divides order of G. So we write order of G as pe m, where p does 

not divide m okay, as always. Let small s be the number of 

Sylow p-subgroups.  

So, as I said the third Sylow theorem is a statement about the 

number of Sylow p-subgroups. Let us call it s, remember s it at 

least 1, by the first Sylow theorem. Then the third Sylow 

theorem says two things. (1) s divides m. Okay, so remember m 



is the factor of, in the order of the group, which does not contain 

any p, after removing all the factors, largest power of p that is 

available.  So, s divides m and (2) s is of the form ap+1 for some 

a in natural numbers.  

 

Okay, so that means when you divide s by p, you have 

remainder 1. So, let us go ahead and prove this. Proof is again a 

clever use of group actions as the first two Sylow theorems 

work. Here also we cleverly use a group action on a suitable 

subset. So, here I am going to consider the set, the useful set 

here is capital S is the set of all Sylow p-subgroups. So this is, H 

is a subgroup of G and order of H is pe, that is the set S.   
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Now we want to consider a G-action on S. So, remember G acts 

by two things on itself or subsets, either by left multiplication or 

by conjugation. Here if you take left multiplication it won’t give 

you an action, why?  Remember S is not just subsets, S is not the 

set of subsets. It is a set of groups; it is a set of subgroups. So, if 

you take left multiplication, you are no longer going to be in the 

set because if you multiply a subset, subgroup by an element on 

the left you will have a subset not necessarily a subgroup. 

 

So, if you consider the action of G on S by left multiplication it 

will not give you an action because our set now consists of 

subgroups. So, we are going to consider the action by 

conjugation. Remember as I said in the previous video, 

conjugation preserves this set. So, in other words if H is an S, 

then g and g is in G, gH is also, gH by definition is gH g−1. So 

here it is not the left multiplication, it is the group action, g. H is 

also in S, because gHg−1 is a subgroup and its order is also pe. 



 

  

So, it is an action. So, now this is the goal for us. Now by the 

second Sylow theorem, so first of all let us fix some element of 

H, S so. Let H be in S. So, that is H is a Sylow p-subgroup of G.  

 

What is the orbit of S, sorry orbit of H? What is the orbit of H 

under this action? Remember the proof in this case completely 

depends on the action of the group G on this set S by 

conjugation. What is the orbit of H? It is all gH g−1, as g varies is 

in the group, gH g−1. Now remember gH g−1are all Sylow p-

subgroups that is okay. But by the second Sylow theorem this is 

all of S, correct?  

 

Because every, any two Sylow p-subgroups are conjugate. So 

you take any element of S, namely a Sylow p-subgroup. It is 

conjugate to H because any two conjugate; any two Sylow p-

subgroups are conjugate by second Sylow theorem. So, there 

will be a suitable g such that gH g−1 is that Sylow p-subgroup.  

 

So, the orbit of H is all of S. What is the stabilizer of H? 

Stabilizer of H is all group elements such that gH g−1is H. Under 

the action you must get back H. This is what we called the 

normalizer, if you recall from one of the earlier videos, this is 

the normalizer of H. So, let us denote this by N (H) and for 

simplicity I am just going to call it N, okay.   
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So now the counting formula gives me the following. Counting 

formula applied for, applied to this particular G action on S and 

for the element H. It says that cardinality of G is equal to 

cardinality of stabilizer of H times the orbit of H. This is the 

counting formula. This is pe times m; this is equal to, what is the 

stabilizer of H? This is the order of N, N was my notation for the 

normalizer and orbit of H is S, right.  

 

Orbit of H by the second Sylow theorem is all of S. So hence, 

pem is equal to capital N times capital s. So, capital N order 

capital N times remember our notation was number of Sylow p-

subgroups was  called s, right in the definition. In the statement 

of the theorem small s denotes the number of Sylow p-

subgroups. Capital S the set of Sylow p-subgroups. So, order of 

S is small s; so pe m is s times order of N.  

 

 

Now what we have is the following. Normalizer of a subgroup H 

will always contain the subgroup. So we have this because 

remember normalizer is all elements such that gH g−1= H, if 

some element is already in capital H, certainly it will contain, it 

will be contained in the normalizer so, we have this. Then I 

claim, so we have the index of N in G divides the index of G in 

H,  H in G. Why is this?  

 

I will quickly tell you why. What we have is the counting 

formula for the subgroup of a group tells me that, this is one of 

the original counting formulas. Order of the group is the index 

times order of the subgroup. But remember this is also equal to 

the index of N in G times order of N. I am applying the counting 

formula first to H and then to N.  
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But since, H is in N, Lagrange’s theorem says what? Lagrange’s 

theorem says that order of a subgroup divides order of the group. 

So order of H divides order of N. So we can write order of H 

times some, let us say L is order of N for some L in natural 

numbers, positive integer.  

 

So, now let us recall this, so order of G is index of H times order 

of H, which is the index of N times order of N. But order of N is 

order of, so I am going to rewrite this as index of N and instead 

of N order of N, I am going to use this, order of H times L. 

  

So, now I will look at the, this term and this term and cancel H, 

order of H. So,  index of H is equal to index of N times L. So, 

index of N divides index of H. Okay, index of N divides index 

of H. Now let us look at the counting formula that we had 

earlier. What is the index of N?  
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So I want to understand, by the counting formula we have order 

of G is equal to s times order of N, right. So this implies s is 

equal to order of G divided by order of N, which is index of N. 

But what I have just concluded is, index of N, so is that clear? 

We proved earlier that order of G is equal to small s times order 

of N. So, small s is order of G divided by order of N which is by 



definition the index of N, not by definition but by the counting 

formula, is index of N. 

 

 

But we know that index of N divides index of H. And what is 

the index of H? This in turn is the order of G divided by order of 

H, but H is remember a Sylow p-subgroup. So, this is pem by pe 

, this is m. Okay, so s is the index of N so, s divides m and I 

think this gives (1), I called it (1), (1) of the theorem.  

 

Remember the statement of the Sylow theorem is that if you call 

small s, the number of Sylow p-subgroups it divides m and it is 

of the form ap+1.  

 

So, I have just proved the first part of it. Right, this gives the 

first statement of the theorem.  

 

To prove the second theorem, second part to prove (2) I am 

going to consider a different action by a different group. To 

prove (2) we consider a different action. So, here I want to 

consider, we look at, so earlier I looked at the action of the 

group G on the set of all Sylow p-subgroups that gave me the 

statement (1). To prove statement (2) I will look at the action of 

H, H is a, so we actually fix. So, fix a Sylow p-subgroup, call it 

H, and we look at the action of H on the same set as above. 
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So, S being all Sylow p-subgroups of G, right. So as in the 

previous, part (1) of this theorem, S was the same set, I am only 



changing the set the group which is acting. I do not consider the 

action of G, all of G, I only consider the action of the group H. 

So, Sylow p-subgroups the set remains the same. And I am 

going to call this set H, see H is an element of this right? So, H1 

is called, I am just going to take H as H1, H2, H3 and remember 

there are s of them. Small s is the number of elements of capital 

S.  

 

So, we look at H action on S, H action on S by conjugation. So, 

only difference from the first part is, instead of looking at the 

action of G on S by conjugation, we look at the action of H on S 

by conjugation.  

 

Okay, so now what is the, so I am going to figure out what is the 

orbit of H? First I am going to understand what is the orbit of H. 

What is orbit of H? So, orbit of H, so orb of H is all gH g−1, but 

now where is g?  

 

Because so maybe I should call what is the H-orbit of H. 

Remember I am no longer interested in the action of G, what 

happens outside H is of no concern for me. I am only interested 

in the H-orbit of H. What is the H-orbit of H? It is all groups of 

the form gH g−1, where g is in H. But this is exactly H. Right, 

because if g is in H, gH g−1is H. So, orbit of H is just the 

singleton H. Now choose some let any i  be any number bigger 

than 1.  

 

What is the orbit of (Hi), is what I want to think about, and for 

that I will suppose that {Hi} is an H-orbit of H, of S rather. 

Remember I am looking at capital H acting on capital S by 

conjugation. Suppose that some Sylow p-subgroup, different 



from H, so (i) is greater than 1, different from H, let us say Hi 

forms an orbit by itself. What can we say about Hi is what I 

want to understand.  
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But if {Hi} is an orbit by itself, then what we have is h times 

(Hi) times h−1 is equal to (Hi) for all h. Right, this is the meaning 

of capital {Hi} being an H-orbit because H orbit of (Hi) is all 

elements like this, all subgroups like this but it is just (Hi). The 

singleton {Hi} is an H orbit, that means H times small h times 

(Hi) times small h −1 is equal to (Hi) for every h in H. That 

means small h is in normalizer of Hi for all (i). Right small h is 

in normalizer of Hi for all i, because what is a normalizer?  

 

Recall, I am going to call it Ni which is the normalizer of (Hi) is 

by definition all g in G such that gHi g −1is Hi. If you go back 

and see in the earlier part of the video, normalizer was defined 

to be this. Now if h times (Hi) times h−1 is (Hi), then h belongs 

to the normalizer. So, H for small, for every, sorry, it is for all 

iH in capital H. That means capital H is in normalizer of (Hi). 

So, capital H is in Ni. So, now we have two things.  

 

So, we have H and (Hi) are both subgroups of Ni, right.  

Because I concluded here that H is in Ni and I definitely know 

that (Hi) is in Ni, that is not a problem. (Hi) is in Ni, H is also in 

Ni, so they are both subgroups of Ni. Moreover H and (Hi) are 

in fact Sylow p-subgroups of Ni. Why is that?  

 



What are Sylow p-subgroups of Ni? You look at the order of Ni, 

you look at the largest power of p that appears in it and you look 

at those subgroups of that order. Remember Ni is a subgroup of 

N, so order of Ni divides order of N. 

 

 

So, the largest power of p that appears in Ni cannot be more than 

e which is the, so in fact what we have is also some Ni is pem 

prime, because remember what we have is Hi is contained in Ni, 

contained in G. So, this has order, Hi as order pe, G as order p 
em. So, order of Ni must be divisible by pi by Lagrange’s 

theorem and in turn, it must divide Pem. So, it must be some m 

prime. Right so Sylow p-subgroups of Ni are also subgroups of 

order p i.  

 

H and Hi remember are subgroups of order pi. They are both 

subgroups of Ni and they both have the order pi, so they are both 

Sylow p-subgroups of Ni.  

 

 

So, by the second Sylow theorem, so just to repeat, the largest 

power of p that appears in Ni, is also pe. So, Sylow p-subgroups 

of Ni are subgroups of order pi and we have shown we know 

that H and (Hi) are both subgroups of N and both have order p 

power; they are  both subgroups of Ni and both have order pe.  

So, they are both Sylow p-subgroups of Ni. Now what does the 

Sylow second theorem say?  It says that any two Sylow 

subgroups or conjugate. 
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So, H and Hi are conjugate in Ni. So, here I am only focused on 

applying the theorems to Ni, not to G. So, apply the second 

Sylow theorem to Ni. Ni is a finite group; H and (Hi) are 

subgroups of Ni which are both Sylow p-subgroups. So, they are 

conjugate in Ni. That is, there exists g in Ni, such that gHi g−1 is 

H, right. This is the meaning of being conjugate. But if g is in 

Ni, recall what is Ni; Ni is the elements g such that gHi g−1 is 

equal to Hi.  

 

This means gH g−1, gHi g−1 is Hi but this is also at the same time 

equal to H because gHi g−1 is H that is the assumption that, that 

is the consequence of the second Sylow theorem because they 

are conjugate but g being Ni forces gHi g−1 to be (Hi).This is the 

definition of Ni. That means H is equal to Hi.  

 

So, the upshot of all this is: if {Hi} is an orbit, is an H-orbit in S, 

then Hi equal to H. Okay, so if Hi is an N orbit, Hi is an H-orbit 

of S then it is H. what we have shown is H is an orbit by itself 

that is okay but if Hi is an orbit by itself we must have that Hi is 

equal to H. So, it is the only singleton orbit of S, so written 

differently H is the only singleton orbit in S. Singleton orbit 

means an orbit consisting of a single element. It is only singleton 

orbit of S.  
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Now consider orbit decomposition of S. So, we have the size of 

S which remember was denoted by small S is order of O1+ order 

of O2+ …+ order of Ok. And let us assume that order of O1, 

sorry O1 is orbit of H. H was the fixed thing that we had dealt 



with. Okay, so that is H. So, order of O1 is 1 +order of O2 + 

order of Ok. So, here of course I am looking at H-orbit 

decomposition and by what we have done above by the above 

argument, order of Oi is at least 2 for all i from 2 to k, right.  So 

every other orbit has at least two elements because if it has only 

one element, it must be H.  So, it has to, and that we have 

already accounted for. So, they are all at least 2.  

 

But now apply counting formula. What we get in the counting 

formula? Here we are looking at the H action. So, let us say Oi is 

the orbit of Hi. So, if that applied counting formula applied to 

that says order of H is stabilizer of Oi, sorry stabilizer of Hi 

times the size of Oi. But what is the order of H? H is a Sylow p-

subgroup, so order of H is pe.  

 

 

So, this means order of Oi divides p, this is great, order of Oi 

divides p because pe is stabilizer of Hi times order of Oi.  So 

order of Oi divides p. But for i at least two, we have two facts: 

order of Oi is at least two by this argument and it also divides p. 

Okay, so it cannot be 1, so they are all at least two. So, now let 

us look at the orbit decomposition of S and I am going to write it 

like this. 
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Small s is the order of S which is O1+O2 +Ok but we agreed that 

order of O1 is 1 + order of O2 is something times p. Right, 

something times so let us say order of Oi is p times let us say Ai, 



that Ai is at least 1. So, it is p times A2, p times A3, so order of 

O3 is p times A3, order of Ok Ak is p times Ak. So, 1 times + p 

times (A2 + A3+ Ak) and you call this A, and this is exactly the 

statement that we made, this gives (2).  

 

So, the proof is complete. Right, so we have shown that the 

number of Sylow p-subgroups when you divide by p leaves a 

remainder of 1. So, let us quickly recap this. The argument was 

we look at; we fix a Sylow p-subgroup. So, let’s see where we 

started with this. So, we fix a Sylow p-subgroup and then look at 

the action of that Sylow p-subgroup on the collection of all 

Sylow p-subgroups by conjugation and after some work we 

concluded that the only singleton orbit is H itself. Any other 

orbit must contain at least two elements.  

So, the orbit decomposition looks like this: s equals 1+ the 

remaining orbits. But the remaining orbits must divide p because 

of the counting formula. So, all the remaining terms are divisible 

by p and 1 is left so s itself must be of the form 1+ ap.  

 

Okay, so let us again look at the example of S3 with that we 

have seen before. So, here of course order of S3 is 6 which is 2 

times 3. So, the number of, let us denote by s2, the number of 

Sylow 2-groups, subgroups and s3 is the number of Sylow 3-

subgroups.  
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The third Sylow theorem says so, let us first do s2. So s2 divides 

3 and s2 is 1+3A or 1+2A right. But, and what is s2?  So, third 

Sylow theorem says this. But we know what s2 is. What is s2? 



We already seen right there are 3 Sylow 2-subgroups, that does 

three satisfy this? Yes of course it does because 3 divides 3 and 

3 is of the form 1+2 here.  

What does third Sylow theorem says about s3? We know of 

course we know s3 is 1 so, let us see if that is confirmed by 

Sylow theorem, third Sylow theorem. s3 should be a divisor of 2 

and s3 must also be 1+3a.  So, 1 satisfies this. Correct, because 1 

divides 2 and 1 is of the form 3A, 1+3a.  

 

Okay, so this says that, this just confirms what Sylow theorem 

says but I want to stress one fact here. Sylow theorem does not 

tell you exactly what the number of Sylow p-subgroups is. 

Okay, it only gives you a range of possibilities. You have to 

further investigate the group to determine which possibility 

occurs. See as in this example, before you knew this, suppose 

you did not know this, we can say that even if we did not know 

anything about s3, we can say s3 must be 1. 

 

Why is that? Because s3 divides 2 that leave only 2 possibilities, 

it is either 1 or 2. Right, but it also at the same time must be of 

the form 1+3a but 2 are not of the form 1+3a. So, we can say s3 

must be 1. This immediately come, no matter what the group is, 

even if you did not know that is S3, s3 must be 2. On the other 

hand s2 can be 1 or 3, why is that? Because remember the 

conditions are s2 divides 3 and s2 is 1+ 2a.  

 

Certainly 1 divides 1 has these properties because 1 divides 3 

and 1 is of the form 1+2 times 0; and 3 also has this property, 3 

divides 3 and 3 is of the form 1+ 2 times 1.  

 



So, Sylow theorem only says that s2 can be either 1 or 3 and in 

the example of the symmetric group, the option 3 is achieved. 

Of course my notation is confusing here because the group and 

also S3 so I hope you do not get too confused about this. So, if 

the group is S3 then s2 is 3.  
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On the other hand let us take the group to be, if we take the 

group to be Z mod 6Z, this is also group of order 6. Then s2 is 

actually 1. This is an exercise for you; Z mod 6Z has exactly one 

Sylow 2-subgroup. Okay, so in this case s2 is equal to 1 is 

achieved.  

 

So, just to recap Sylow theorem is not a conclusive answer to, 

third Sylow theorem is not a conclusive answer to the question 

of how many Sylow p-subgroups exist because it only gives you 

a range.  

 

As this is example of order 6 suggests sometimes that range 

contains only one element like in this case; if you have a group 

of order 6 we know that there must be only one Sylow 3-

subgroup that we can say because that number has to divide 2 

and at the same time be of the form 1+3a.  

 

On the other hand, when you look at Sylow 2-subgroups there 

are either 1 or 3, and as you can see in these two examples, both 

options are achieved.  



 

 

So, the Sylow third, third Sylow theorem is not very precise, it 

gives you a range of possibilities. Sometimes that range is very 

small, in fact it can be even 1 possibility, sometimes you can 

further study the group to eliminate some possibilities. But as it 

is third Sylow theorem is very useful. So, I will stop the video 

here in the next video I will look at some applications of Sylow 

theorems and solve some problems. Thank you. 
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