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Okay, in this last part of the course we are going to study the 

Sylow theorems, 

(Refer Slide Time: 00:21) 

 

which is the last topic. Sylow theorems are very important part 

of finite group theory, they are standard theorems and they are 

very useful in understanding finite groups. Before we state, there 

are three Sylow theorems, I will state them and prove them in 

next few videos. Let me first recall what we have learned in the 

previous videos. 

 

 

So our setup was a following. So G is a finite group, so we are 

going to recall first. So remember our setup is G is a finite 

group, S is a set okay, so most of the time we will deal with 

finite sets and the assumption is G acts on S, right. So there is a 

map from G cross S to S, you have a an element g and an 

element s, we map it to what we call g dot s. So sometimes we 

just write it as gs. And it has usual properties 1 dot s is s, and 

(g1g2)s is g1(g2s). 



Okay, so these are the properties of group action. So now and 

the most important thing that we have learned, 

(Refer Slide Time: 01:56) 

in the video when we talked about group actions was the 

counting formula. Remember, so let say small s is an element of 

capital S. So S is the set on which G acts, so then the stabilizer 

of s, we have defined stabilizer of s denoted by Gs or sometime I 

will denote it by stab(s), and that is all group elements which fix 

s or stabilize s, remember that this is a subgroup, subgroup of, 

this is a subgroup of G. So this is a subgroup of G and the other 

important set that we have attached to small s is orbit of s which 

are denoted by Os, it is a subset of s given by gs, g belonging to 

G, right. So this is the orbit, this is a subset of S.  

 

 

These are the two things that we attached to a particular element, 

so these are attached to a small s, and the counting formula says 

the order of G is equal to order of the stabilizer times the order 

of the orbit, meaning number of elements. So you take the order 

of the subgroup Gs and multiply with the order of the orbit or 

the number of elements in orbit you get the order of the group. 

And remember how do we do this, we observed that this 

follows, remember this follows because, this follows from the 

bijection between, this follows bijection between G mod Gs and 

Os.  

So we take a coset and map it to Gs. So this was the proof of the 

counting formula. And another important property of group 

actions is, 
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equivalence classes, so the action of G on S partitions S into 

disjoint orbits, right. So if S is a finite set, then we can write the 

order of S or the size of S or the number of element of S as the 

sum of sizes of disjoint orbits so let us call this o1, o2, …, ok, 

where o1,..,ok are distinct orbits. Remember that orbits, two 

different orbits are always disjoint, so the two orbits are distinct, 

so they are either disjoint or same. 

 

 

So you can always use this, these are the two important 

equations that we have attached to a group action. We have the 

counting formula which says something about the order of the 

group and then we have something about the order of set, and 

the most important actions for us in the context of the Sylow 

theorems. 
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So we are interested in the action of a group G on itself. 

Remember that the two equations that I recall for you are 

general statements, whenever a finite group act on a finite set S 

they hold. But we want to focus in these videos on the group G 

acting on itself. So in other words the set is also S, the set is also 

G and we are interested in the two important actions are the 

following.  

 

So one, G acts on G by left multiplication, remember this means 

the action is given by g dot let me use the letter s, so g and s are 

of course in G but I want to distinguish between the group 

element and element when thought of as a set. So this is just 



action, so multiplication on the left. The other important, 
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action on G on itself is by conjugation. So here g acts on s by 

conjugation so gs is defined to be gs, g-1. We checked in our 

earlier video that these are the actions of G on itself. So this 

gives the important class equation, this was the other important 

thing that we have learned about group actions. The action of G 

on itself by conjugation gives us the class equation. What is the 

class equation? 

 

So we can write the order of G as order of conjugacy classes. So 

c1 through ck are conjugacy classes, distinct conjugacy classes 

of G. Recall that conjugacy class remember what is conjugacy 

class? Conjugacy class is simply orbit its an orbit for G acting 

on itself by conjugation. Okay, so I won’t go into details 

because we have discussed this, except to say that, 
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there is a class equation for every finite group, we can compute 

in principle class equation of any finite group. I will recall for 

you, for S3 order is 6 and there are three conjugacy classes of 

orders 1, 2, and 3, so this is the class equation of S3. Okay, so 

now this is all for recalling.  

 

Let me now go to the new stuff. So I want to in this video setup 

the Sylow theorems, first Sylow theorem and prove it.  



So for that in these three theorems that we will call Sylow 

theorems, we are going to repeatedly and alternately use G 

acting on itself by conjugation sometimes, by left multiplication 

sometimes.  
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So suppose, so now suppose, G acts on itself, consider the action 

of G on itself by left multiplication, so one of the first of the two 

operations I mentioned of a group on itself. So this is the action 

of G left, on itself by left multiplication.  

 

So now I want to define we want to define an action of G on 

subsets of S. Okay, so we know that G acts on itself by left 

multiplication, using that I want to define an action of G on 

subsets of S so S is actually G on subsets of G. So suppose let A 

be a subset, so I want to stress here, it is only a subset in general, 

not necessarily a subgroup. So it is just a subset. It is some 

collection of elements of G. And let small g be an element of the 

group.  

 

Define g dot A, the definition of g dot A is very natural, so it is 

ga as a various in small a varies in capital A. So I will leave it as 

an exercise for you, 
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and this is very easy exercise, so if you recall or define the 

power set of G. So this is P of G is the set of all subsets of G, so 



the above action, so what I defined earlier defines an action of G 

on the power set. Right, so I define g of A to be ga, g times 

small a, as a varies in capital A. So now you can define this for 

any subset so I claim that it is an action of G on this new set 

namely the power set. What are the conditions to check?  

 

Identity times any subset itself, that is clear, because if g is 

identity, g times a is just a and similarly the associativity 

property holds, which is trivial to check. So we have in action of 

the group on the power set, so now let us fix a subset of G.  

 

 

What is a stabilizer of A? Let us explore this, what is the 

stabilizer of A? Okay, so remember stabilizer is, so I am going 

to use this notation, stabilizer of A is all group elements such 

that gA is A that’s all. 

 

So stabilizer is this, so I want to stress here that gA equal to A, 

means, what does it mean? So the set gA as a is in A, which is 

exactly gA is A. So in other words, if a belongs to a then ga also 

belong to A. This is the meaning of small g stabilizing capital A, 

so it must have the property that if small a belongs to capital A, 

then small ga belongs to capital A. Then we say that it stabilizes 

capital A, in  particular it is not necessary that ga is equal to a, 

right that is not necessary, ga is equal to a, need not happen. 

 

We do not need ga to be a, so it is not necessary. We need that 

ga is again in A, so certainly g times capital A equal to capital A 

doesn’t mean g times small a is equal to small a. 

 

 



 

So with that, now suppose that, so now let’s go back to the 

general situation, G is a group acting on itself by left 

multiplication, okay, so now we are in the general situation that 

G is a group acting on itself by left multiplication and I have 

extended that action to subsets of G. So now let’s look at 

following situation.  
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Suppose that you have again, G acts on itself by left 

multiplication and A is a subset of G, we have extended the 

action of G to subsets as above. Okay, now I am going to 

consider, let the stabilizer be, let H be the stabilizer of A, so 

remember this means it is all elements which fix the set A, not 

an element of A, they do not fix an element of A. They are 

allowed to interchange elements of A, you take an element of A 

small g maps it to some other element of capital A.  

 

Okay, now I am going to prove that, so this, I am going to prove 

a small lemma here which I will use later. So the lemma is the 

order of H divides the order of A. So whenever I use this vertical 

bars I always mean order of that set, meaning the number of 

elements of that set. Okay, so and also I must tell you again that 

in the all the videos from now on G is a finite group. So we 

assumed that G is a finite group, okay so what is the proof of 

this? 

 

 

So I want to show that order of H divides order of A, and the 



reason is remember H is the stabilizer of A, so let small a be in 

capital A. Then since H stabilizers A, ha is in A for every h in H. 

So the set in the other words, the set ha as h varies in capital H is 

contained in capital A,right. So the, I want to call like this, I 

want to write like this, the H-orbit of a is completely inside A, is 

that clear? The H-orbit of small a is completely inside A. What 

is H-orbit? 

H-orbit is simply what I wrote earlier. So ha, small ha, as small 

h in H. H-orbit is simply the orbit of A as you take elements of 

capital H, I am calling H-orbit as opposed to orbit, because I am, 

now I have a different group right, earlier I am considering G-

action now I am considering H-action, so orbits are dependent 

on the group which is acting. 

So to stress that here I am looking at the action of capital H, and 

I am talking about H-orbit, so the point is capital H is the 

stabilizer of A, so if small a is an capital A the H-orbit of small a 

is completely inside A. So in other words, 
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hence, A is the union of H-orbits right, because remember H-

orbits are of course H-orbits are disjoint. And a must be the 

union of, why is this, why is it a union of H-orbits? Because if a 

belongs to A then the H-orbits of a, let us denote by H-orbit is 

completely contained inside A. So what is H-orbit? I am going 

to write it as ha, because it is small h times small a, as small h 

varies in capital H, this is simply the right coset. Right, this is 

right coset of a. 

 

So H-orbit, if small a is a capital A the entire right coset is in 



capital A. So A must be a union of Ha, of course Ha will be 

same for different a’s perhaps, Ha maybe equal to Hb, but they 

cover A, there is no problem. Now also we know that cosets are 

disjoint, so we can write A as, in fact, we can write A as a 

disjoint union of cosets. 

 

 

So, right,  we can write A, as some Ha1, disjoint union Ha2, 

disjoint union H(ar), so because again remember cosets which 

are equivalence classes for a group action are either same or 

they are disjoint. So A is union of Ha, because every small a is a 

some Ha, namely it is in Ha and they cover A of course.  

 

 

Hence they cover A, the important point is Ha is, all of Ha is in 

capital A, so we have this. And once you have that, we just 

identify the distinct ones among them and write it like this. So A 

is a union of Ha1, Ha2, H(ar), so in particular the order of A is 

equal to order of Ha1 plus the order of Ha2, and so on up to the 

order of H(ar). Okay, now let’s see, what is the order of Ha1? 

Order of Ha1 is just order of H. Similarly order of Ha2 is order 

of H, order of H(ar) is order of H again. So this is the order of H 

times r.  
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So order of A is equal to r times order of H. This means exactly 

that H divides order of H divides order of A, right. This is the 

meaning of dividing and here we are only using the fact that, so 

we used if you have Ha remember if you take a coset of a 



subgroup, left or right it doesn’t matter, the order is the same 

because it is a group property.  

Small ha as you vary h, will be, there will be as many elements 

as there are elements of capital H. So this is an easy exercise that 

we have done in the previous videos, so this prove the 

proportion right, so let’s recall the proportion or the lemma I 

called it. If you have G acting on itself by left multiplication and 

you take a subset of the group G and its, the subset is called as A 

and H is the stabilizer of A , then the order of H divides the 

order of A. 

 

Okay, this is important for us when we do proofs of  Sylow 

theorems later on. So now let us go ahead and start our 

discussion of Sylow theorems. So now our goal is to study. 
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So we are going to prove Sylow theorems. Okay, there are three 

Sylow theorems. I am going to state them and prove them one 

by one, but they all have to do with the following setup.  

 

So G let G be a finite group. So I am going to, Sylow theorems 

are very important theorems to understand something about the 

finite groups.  So we understand this in the following way.  

 

So let p be a prime number, so we are going to write suppose the 

order of G is n, so we are going to write n as p^e times m, where 

p and m are co-prime. Remember that “co-prime” means p and 

m have no common factors because p is a prime number it 

simply means that p does not divide m, so this only means, in 



this situation, p does not divide m. 

 

Okay, we can always write any number like this. So n equals 

p^e, power p power e times m. See for example if n is 6 and p is 

2, we can write 6 as 2 times 3, if p is 3 and n is equal to 6, we 

write 3 as 2, 3 times 2. But if n equal to 6, so here e equal to 1 

and m equal to 3. So write 21 here also e equal to 1 but m equal 

to 2. Now on the other hand if n is equal to 6 and p is equal to 5, 

how do you write this? It is 50 times 6, so e is zero, m is 6.  

 

 

So e is, in this description, e is always non-negative. Right, and 

m is always at least 1, so n is at least 1. So its a finite group, so it 

must have at least 1 element. So we have this situation, so we 

simply look at how many times p appears in n, it may not appear 

at all like when it is 5 and n is equal to 6, or if n is 12 and p is 2, 

we have 12 equals 2 squared times 2, so e is 2 and m is 3. So we 

simply look at how many times a prime appears. 

 

 

 

So now Sylow theorems are really statements about special 

subgroups of a group G and these subgroups are described by 

the element p. 
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So the important definition for us in this is: A, so G is a finite 

group as above, a “Sylow p-subgroup” of G is a subgroup of 

order p power e. So we of course write, it is important to write 



this, so the order of group is written as pem. So a Sylow-p 

subgroup of G is a subgroup order p^e, where p^e is the largest 

power of p that divides the order of the group G, okay.  So a 

Sylow-p subgroup is a subgroup of order p power e.  

 

So as an example, a Sylow-2 subgroup of S3 is a subgroup of 

order two. And if you recall our study of S3 in the previous 

videos, S3 has 3 Sylow-2 subgroups, because it has three 

elements of order two, each of them generates a subgroup order 

2, so there are three Sylow-2 subgroups of S3. On the other 

hand, S3 has only one Sylow-3 subgroup, so I want you to get 

used to these notations, what is a Sylow-3 subgroup of S3? What 

is the order of Sylow-3 subgroup? Remember 6 is written as 31 

times 2, so a Sylow-3 subgroup has order 3. And there is only 

one subgroup of S3 which has order 3. 
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And S3 has no Sylow p-subgroups if p is not equal to 2 and p is 

not equal to 3. Because if p is not equal to 2 and p is not equal to 

3, that prime does not divide the order of S3, which is 6. So p^e 

will be p^0, so there is no subgroup of that order, so we only 

consider this, so this is the convention. We only look at Sylow-p 

subgroups, if p divides e, p divides order of group, in other 

words in my notation small e is positive. 

On the other hand if G is a group of order 100, a Sylow-5 

subgroup of G, let us think about it, what is, see 5 is a prime 

divide 100, so it Sylow 5-subgroups can be studied.  

 

So what is a Sylow 5-subgroup of G? What will its order be? It 



will be order 25. This is because 100 are equal to 52 times 4, 25 

times 4.  So a Sylow 5-subgroup will have order 5 squared.  

 

 

Similarly a Sylow 2-subgroup of G has an order, now 4, because 

100 is 2 squared times 25. So Sylow 2-subgroup will have order 

4, 2 squared. So we look at the largest power that divides the 

order, not just, for Sylow 2-subgroup it’s not 2, its 4. Similarly 

Sylow 5-subgroup it is 25.  

 

So these are Sylow p-subgroups of a finite group G and the 

Sylow theorems are statements about their existence, their 

properties, how many there are and so on. So I will stop this 

video here, in the remaining videos we are going to state Sylow 

theorems and prove them and then look at some examples and 

exercises. Thank you. 
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