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In this video we are going to prove one of the important 

theorems in group theory called Cayley’s theorem. Let me write 

it down and I will prove it, it’s an important theorem because it 

tells you something about structure of groups and the proof is 

fairly easy given that we have understood already some facts 

about group actions, ok.  

 

Cayley’s theorem is the following. So let G be a finite group of 

order n, that means G has an exactly n elements. Then it says, 

then G is isomorphi c to a subgroup of Sn, okay. So it says 

simply, this is the theorem: if G is a finite group order n G is 

isomorphi c to a subgroup of Sn. Recall that Sn is the symmetric 

group on n letters.  

 

 

So I said this is a structural result about groups because 

symmetric groups are very general in this sense, every group 

finite group can be put inside in a symmetric group. So if you 

study symmetric groups and all their subgroups you would have 

studied all groups, that is the point of Cayley’s theorem. Every 

finite group is isomorphi c to a subgroup of Sn where n is the 



order of the group.  

 

So for the proof we are going to consider the action of G on 

itself by left multiplication, ok, so when I defined actions,  group 

actions on a set S, I gave you several examples, two of  those the 

examples where group acting on itself, so the group is G, the set 

is also G in these examples. And there were two important 

actions that I highlighted at that point of a group on itself, one is 

by left multiplication, and the other is by conjugation ok. So in 

this proof we are going to apply the action of G on itself by left 

multiplication.  

 

 

This means if you have G, so here the set is also G and then gs is 

simply gs, which is the, gs is simply the product of g and s in G, 

right. So this the product inside the group G, so let’s use this. 

Now how do I use this? So I am going to fix g in G, first fix 

small g in G.  

 

 

Consider the function G to G, because this function is dependent 

on g, let me call this phi  sub g, consider the function defined by 

I will take small s, phi  g of s is gs, so remember G is playing 

two avatars here one is as a group the other is as a set. Here I am 

thinking of G as a set, I am fixing a group element g, I am 

giving you a function on the set to itself, its a function from the 

set G to the set G. Because it is determined by small g, I am 

going to denote the function by phi subscript g. 

So what does it do? It takes an element small s and maps it to gs. 

We claim that phi g is a bijection. See certainly phi g is a well-

defined function right, it takes an s and maps it to gs, so there is 



no problem phi g is a well-defined function.   

 

Now let’s take this function and we want to show it’s a bijection 

so in another words we have to check it’s 1-1 and it’s onto. So 

why is it 1-1? What is one 1-1? 1-1 means if two things so it’s a 

function G to G, if s1 and s2 map to the same thing then s1and 

s2 must be equal. So let phi g of s1 equals phi g of s2, suppose 

that  happens.  

 

This implies, what is phi g s1? that is gs 1, what is phi g of s2? 

that is gs 2 gs 1=gs 2. Remember g is the element of capital G s1 

is also element of capital G but s1 is being thought of a set 

element of the set G so I am using small g to denote the group 

element and small s1 and small s2 to denote the element of 

capital G when it is being considered as a set. gs 1=gs 2 but this 

is a product in the group, that means s1=s2. 

 

 

The cancellation property in a group, so s1=s2, so phi gs 1=phi 

gs 2 means if two things go to the same thing, they are equal to 

each other. This shows that phi G is 1-1, right. Two distinct 

elements go to the same thing means they are equal.  

 

 

So now it remains only to show phi g is onto .Why is phi g 

onto? What is the meaning of being onto? It means you give me 

any element of the target space there exist s something that maps 

to it, right. You are given this, there exists such an element. So 

now let me give may be given an element s in capital G, so 

which element maps to this? So then phi g of g inverse s, let’s 

consider g inverse s, right. If s is in G, g inverse s is also in G. 



 

 

So what is phi g of g inverse s? By definition this is g times g 

inverse of s, by associability this is g(g inverse)=g(g inverse 

s)=(g g inverse)s which is s, right. So if you give me an arbitrary 

element of s, g inverse s maps to this under under phi g, so phi g 

is onto. So phi g is 1-1 and onto so phi g is a bijection, right.  

 

 

So this is the claim we made, we claimed that phi g is a bijection 

which I proved. G has n elements right, that is the  hypothesis, 

the hypothesis is that G is a finite group of order n, that means it 

has exactly n elements. What is Sn? Sn I said is the  symmetric 

group on n letters. 

 

 

So Sn is the group of bijections of this set {1,2,…..,n}, right. But 

really the fact that we are calling the elements 1, 2,…, n is not 

important, Sn is the group of bijections of a set with n elements, 

remember Sn is the group of bijections of an n element set, for 

the convenience when working with symmetric groups it is 

convenient to call the elements 1,  2,  3, up to n, but it need not 

be those, Sn is the group of bijection for any element, n element 

set. G is one such, G is an n element set, so Sn can be identified 

with bijections of G, because Sn is a group of bijections any set 

with n elements and G is a set with an elements, I can naturally  

think of Sn as a group of bijections. 

 

So it cannot be identified with bijections of G, I should write can 

be identified with the group of bijections ok, so if you wish you 

can call the element of G as 1, 2, up to n because it has n 



elements you fix some order take the first element call it 1 

second element is 2 right that’s what we are doing here. Sn can 

be thought of bijections of G but phi g is a bijection of G, so 

now we have a function, lets call it capital ø from G to Sn, what 

does it do? It takes a g and sends it to phi g that I defined earlier, 

remember what is phi g for a fixed small g, phi g is the function 

from G to G and sends s to gs, which I have checked is a 

bijection so phi g we already checked that phi g is a bijection of 

G, so phi g is in Sn because Sn is for the purposes of this 

theorem we are thinking of Sn as a group of bijections of G 

itself, so phi g, being a bijection of G, is an element of Sn. So I 

am sending g to phi g. Now ø, capital phi a function from a 

group to another group, so now I claim that phi is a group 

homomorphism, ok. 

 

 

So this is, you have to be careful here, so what is the function 

phi? It sends an element to another function, the function sends 

an element to another function, that’s what capital phi is doing 

because Sn is really functions of G to G and a small g under the 

function capital phi goes to the function small phi g. So capital 

phi is a function that takes an element of the group G and sends 

it to a function which is what we are calling by phi g. 

 

So I am now claiming that phi is a group homomorphism, that 

is, capital ø(g1g2) =ø(g1) composed with ø(g2). And remember 

the composition on Sn when Sn is being thought as bijections of 

capital G, the binary operation there is the composition, so you 

apply, you take two elements of capital G, g1 and g2, we want to 

first multiply them and apply phi then phi of g1 as a function 



composed with phi of g2 will give you the answer, so this must 

be true for all g1, g2  in G ok.  
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So let’s check this. So now we are saying that two functions are 

equal, because capital ø(g1 g2 ) is a function. We are saying 

that, ok first let me say, the left hand side LHS and the right 

hand side RHS are both functions right, what are they really, 

they are functions from G to itself, to G because they are both in 

Sn which we are considering as all functions bijective functions 

from G to G for the purpose of this theorem. Sn is all bijective 

functions from G to G, this we can do right because G has n 

elements, so this is valid and now LHS and RHS in this equation 

are both functions from G to G. 

 

 

So in order to be equal, so we are saying that these two functions 

are equal, identical as functions. When do we say two functions 

are equal? Two functions are equal if they agree on every 

element of the domain which this case is G. So let us choose an 

arbitrary s in G, again G here is really playing the role of the set, 

so I am taking an element small s, let’s take an element s in G, 

see what LHS and RHS do to s. 
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Let’s do LHS is ø(g1g2), that’s a function from G to G right, 

what does it do to (s)? What does it do to s? ø of (g1g2) 

remember is phi (g1g2), because ø as a function from G to Sn 

sends a small g to phi g, that’s the function capital ø, so ø(g1g2) 

is ø of small phi of (g1g2) and then apply to s, it is this. But 

what is this? Small phi was defined way back in the beginning 

of the proof.  

 Small phi of g is (gs) applied to s, so, small (ⱷ) g1, g2 of (s) 

g1g2s. This is what LHS does to small (s). Now what does RHS 

do? What is RHS? 
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 RHS is (ⱷ) g1 circle (ⱷ) g2, this composition applied to (s), 

composition of functions says that this must be (ⱷ) g1 applied to 

(ⱷ) g2 applied to (s), that is the definition of composition. But 

what is (ⱷ) g2? (ⱷ) g2 is small (ⱷ) g2 (s), right, capital (ⱷ) g2 is 

small (ⱷ) sub g2. This is (ⱷ) g2, g1 by the way, here small (ⱷ) 

g2 of (s) is by definition of small (ⱷ), is g2 (s). But this is equal 

to (ⱷ) g1 of g2 (s), and this is equal to g1g2s. Now are these 

equal? Of course they are equal because this is the associativity 

in the group, so LHS=RHS as functions. Remember we are 

working with an arbitrary(s) so and LHS and RHS agree on that 

arbitrary (s), so they are equal as functions.  

 

So this proves that capital (ⱷ) is a group homomorphism, so this 

justifies that statement that capital (ⱷ) is a group 

homomorphism. Now I want to claim that it is not only a group 

homomorphism, it is an injective group homomorphism. 
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So I want to say (ⱷ) of g is 1-1, (ⱷ) is 1-1. Earlier we have 

showed that small (ⱷ) is 1-1but remember now we are saying 

capital (ⱷ) is 1-1, small (ⱷ) was in fact 1-1 and onto and hence 

became an element of symmetric group. Now I am saying 

capital (ⱷ) is 1-1, it is generally not onto, it is only 1-1. Why is it 

1-1? Because it is a group homomorphism capital (ⱷ) is a group 

homomorphism we checked already, it is enough to check what? 

A group homomorphism is 1-1 if and only if the kernel of 

capital (ⱷ) is the identity element of G, remember a group 

homomorphism is 1-1 if and only if its kernel is identity, so this 

what I am going to check. So suppose, so clearly (e) belongs to 

kernel (ⱷ), remember this requires additional statement, because 

this follows immediately from the fact that (ⱷ) is a group 

homomorphism.  

 

 

So it sends identity to identity so, we need to check the opposite 

inclusion. So suppose g belongs to kernel (ⱷ), kernel (ⱷ) is a 

subgroup of (G), let us take a small (g) in it.  
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This means (ⱷ) of (g), which is what, small phi of g, remember 

capital (ⱷ) is defined to be small (ⱷ) sub (g). So this is, small (g) 

is in the kernel means its image is the identity element of Sn. 

What is the identity element of Sn? Sn is the group of bijections 



of G, it is identity element means it is identity function. So, (ⱷ) g 

is the identity function from G to G. Identity element of the 

symmetric group is the identity function. So (ⱷ) g is the identity 

function. Hence, phi g of (s) =s for all s in S, this is the 

conclusion of g being in the kernel of capital (ⱷ). 
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But what is phi g of s? ⱷ g of s is by definition (gs). So gs=s for 

all s for all s in S. In fact, this is a very strong condition, gs=s 

remember implies (gs) s inverse=s s inverse implies g=e, this is 

the cancelation property, right. We can cancel s,  that is the 

point. 

 

 

 

 

So, g=e, isn’t that what we wanted? We said that kernel is 

identity only, we started with an arbitrary g in kernel (ⱷ) and we 

concluded that it is equal to e. So, capital (ⱷ) is1-1.  
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Now lets us take stock of where we are so, now situation is, 

capital (ⱷ) from G to Sn is a 1-1 group homomorphism. It is a 1-

1 group homomorphism. Now, we recall a point that I made 

after proving the first isomorphism theorem, if you have a 1-1 

group homomorphism or injective group homomorphism, G can 

be identified with a subgroup of Sn.  

 



So by the first isomorphism theorem, remember first 

isomorphism says that a group homomorphism if you have G 

mod the kernel is isomorphic to the image. So G is, in this case 

the kernel is trivial right because it is injective, to the image. By 

the first isomorphism theorem G is isomorphic to the image.  
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But note that the image of (ⱷ), in general the image of a group 

homomorphism is always a subgroup of the target group. In this 

case it is a Sn so image of (ⱷ) is a subgroup of Sn and G is 

isomorphic to it. So, this completes the proof of Cayley’s 

theorem.  

 

Remember what was Cayley’s theorem? So that was the 

beginning of this video. Cayley’s theorem said that if you have a 

finite group of order n, then it isomorphic to a subgroup of Sn , 

which is exactly what we have just proved.  

 

 

G is isomorphic to the image of (ⱷ) and image of (ⱷ) is a 

subgroup of Sn , so G is isomorphic to a subgroup of Sn so, this 

is Cayley’s theorem and this is a structural statement, not always 

very useful and the reason that it’s not always very useful is 

because Sn is a very complicated group, okay.  

 

So, one thing that we have noticed in that video when we talked 

about Sn is the size of Sn keeps increasing by larger and larger 



numbers because S3 has order six, S4 has order 24, S5 has order 

120, S6 has order 720 and so on. So Sn is a very complicated 

group, so knowing that every group is a subgroup of Sn is not in 

practice very useful, however it is a good structural statement. 

 

 

It says that every group can be thought of as a subgroup of Sn. 

So I am going to remark here something that we have proved 

earlier. 
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Re call that a cyclic group is isomorphic to a quotient of the 

form. So compare this statement, cyclic group is isomorphic to 

quotient of the form. So, here also we are relating an arbitrary 

cyclic group to a well-known group like Z. So how do we show 

this?  

 

We take the map from Z to G sending 1 to the generator of G. 

Because G is a cyclic group this is onto and kernel is always of 

the form NZ for some N, for some N, I should write here. So, by 

the first isomorphism theorem Z mod NZ is isomorphic to G. So 

this is also a structural theorem, we are relating an arbitrary 

cyclic group to something well known. 

 

 

Cayley’s theorem does the same. It relates in fact an arbitrary 

group any finite group not just a cyclic group, any finite group is 

actually can be put inside Sn, think of it like this, it can be, it is 

isomorphic to subgroup of Sn, so that means you can put it 

inside Sn.  



 

But the reason why this is very useful? That cyclic groups are of 

the form Z mod NZ  is that Z is very simple group to 

understand, so Z mod NZ is a very simple group and to say that 

every cyclic group and to say that every cyclic group is of that 

form is very nice. 

 

 

Whereas Sn is a very complicated group, so knowing that every 

group is a group of Sn is not in general that useful, okay. 

Nevertheless this is an important theorem in group theory 

because it says that every group sits inside Sn. So in theory you 

know that subgroups of Sn exhaust all finite groups, that is what 

it means. If you list all the subgroups of the symmetric groups 

for all N, then you have listed all groups. 

 

 

 

And that is a strong theoretical statement, and it is sometimes 

useful to, if you work with an arbitrary group G, it sometimes, to 

give it a concrete shape, and you can do that by putting inside 

Sn, and we have done a lot of analysis of Sn, it has a cycle 

decomposition, it has every element can written as a product of 

disjoint cycles, every element is the a product of transpositions, 

there is even and odd permutations.  

 

 

So now knowing that every group is isomorphic to a subgroup 

of Sn, you can really think of elements of G as cycles, because G 

is sitting inside Sn and as far as group-theoretic properties are 

concerned, they are preserved under the isomorphism, so G can 



be replaced by whichever group it is isomorphic to which is a 

subgroup of Sn and work with whatever we know about Sn. So in 

some cases it is a good result, because it helps us give a concrete 

shape to an abstract group. And that is why Cayley’s theorem is 

an important theorem in group theory, so let me stop the video 

here in the next video we will continue our study of group 

actions, thank you. 

  

 

 
 

 
 

 
 

 

 
 

 


