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Let us do one more example, so again this is another example of G
acting on itself. This is also an extremely important example of a
group  acting  on  itself.  So  what  is  this?  So  this  is  called
conjugation, action by conjugation. So, given g in G and s in G
defined g*s, I am going to use star here to be very clear about the
action, this is star refers to the action. Not the product insides the
group.

(Refer Slide Time: 01:02)

Earlier  I  could  be  slightly  vague  because  action  is  already  the
product inside the group. 

(Refer Slide Time: 01:07)

Here, I defined it to be g*s is gsg inverse. So gsg inverse is called
conjugation of s by g. So this is called the conjugation of s by g,
this is the conjugate of s by g. So I should not write conjugation, it



is  called  conjugate.  The  process  of  doing  this  is  called
conjugation. So is this is an operation? Is this is an action? Let us
check this, is this an action? So you have e dot or, e*s, it is by
definition, so the action is defined to be this: e s e inverse which is
ese which is s. So that is okay. What about g1 g2 *s by definition
this is same as g1g2 times s times g1g2 inverse. Right this is the
action.

(Refer Slide Time: 02:27)

But this is same as (g1g2) s g2 inverse g1 inverse right, because
that is inverse in a group, product of g1g2 inverse is g2 inverse
times g1 inverse. This is g1 g2 s g2 inverse, by associativity of
group operation. And this is g1 (g2*s) g1 inverse, right, because
g2*s is by definition g2sg2 inverse. But this is same as g1*(g2*s),
because  g1*something  is  g1  times  that  thing  times  g1  inverse,
right, this is the operation. So g1* this middle thing, g1 times the
middle thing times g1 inverse, that g1* that middle thing. 

Right so this says that g1g2*s is g1*g2s. So * is an operation, is
an action. Again what I am doing is not a formality okay; it is,
there is some content in this. * is an action, the identity is okay,
that is very clear but the associativity required a small proof, right.

(Refer Slide Time: 03:59) 

So this is called, this action of G on itself, is called the conjugation
action. Okay, so the two actions that we have studied by G on



itself,  or  the  left  multiplication  and  conjugation  and  both  are
extremely  important  okay,  both  are  important  because  of  the
results that we can prove using these actions later okay, so this is
the, for now let me stop with the examples here. There are some
other examples that I will come back to later. 

But now let us see some properties of group action. So now let us
continue with our study of, as I said this is actually an easy notion,
group actions, initially if you are seeing it for the first time it is
somewhat strange. So it will take some time get used to, that is
only difficulty the unfamiliarity is the difficulty.

(Refer Slide Time: 05:33)

So please understand the examples very carefully, so I have given
five  examples.  First  one  being,  how  rotations  operate  on  the
vertices of equilateral triangle. Then our familiar symmetric group
acting on in indices. Invertible matrices  acting on column vectors.
And finally the 4th and 5th examples were a group acting on itself
first by left multiplication and then by conjugation. 

So these are the important examples. And if you understand all the
examples carefully, it  is also illustrates the point I made earlier
that group action supposed to be abstract, it is not in some specific
context.  In  any  context  we  have  a  group  and  a  set  S,  and  a
function from G cross S to S satisfying some conditions we have a
group action.  So  now there  are  some obvious,  some important
things  that  we  can  attach  to  group  actions  and  they  are  the
following.
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So let G, so the general situation is, let G be a group acting on a
set S. So G is an abstract arbitrary group. S is an abstract arbitrary
set. Let s be in S, the orbit of s, denoted by os, orbit o for orbit, is
all, so you take gs okay, see the word orbit, you know the word
orbit, it is how an object moves around right, the orbit of earth
around the sun for example. It is how earth moves around the sun,
you connect all the points when it is travels and you get the orbit.
The same idea works  here. 

You take a small s, orbit is always defined for an element of the
set S, and see where it travels under the action of G. So you take
one group element and see what is gs. So I am going to use gs, to
denote the action. So, here we have G cross S to S. I will take a
small g, small s and I will denote its image by gs. I will not use *
or (.) just for simplicity. So, I take small s see wherever it travels
under the action of capital G. So, small g, one element small g,
take another element g prime take g double prime. You do this for
every element small g and see where it travels and you see call
that orbit of s. Orbit of s is of course a subset of capital S. 

(Refer Slide Time: 08:29)

So, orbit of s should be thought of as the set where small s travels
under the action of G, okay. Now I should quickly check, in all the
examples orbits. For example, okay, so the first example G was
the group of rotations and S was the vertices. What is the orbit of
s, of let us say of A? Now if you go back and see the orbit, action,



A will always be in the orbit because, identity A will be A. And r1
A was B, r2 A was C.

So orbit of A in this case happens to be S. Similarly this is also
orbit of B and orbit of C. In the second one G was the symmetric
group, and S was indices 1 through N. What is the orbit of 1? 1 is
there certainly because the identity 1 is 1, 2 is there because (1,2)
sends 1 to 2, 3 is also there because (1, 2) applied to 1 is 2, (1,3)
applied to 1 is 3. (1 i) in general applied to 1 is i. So in this case
also orbit of 1 is all of S, and S you can see this is orbit of 2, orbit
of 3, orbit of n. So they are all S.

(Refer Slide Time: 10:42)

In the third example we have G=GLn(R), and S=R^n. If you take
the zero vector, okay, in the previous two examples  you might
think that orbit is always equal to all of the set. But that is not
necessarily the case. So what is orbit of, if you take any matrix, A
and multiply by 0, you get 0 right, so orbit of 0 is just the element
0, nothing else is there. And now on the other end to take a vector,
this  is  an  exercise  that  you  can  do  using  properties  of  matrix
multiplication. If V is R^n and V is different from 0 then the orbit
of V is all of R^n minus 0. 

(Refer Slide Time: 11:53)

So this is to say that, in other words, given any nonzero vectors, v
and w in, so I do not have a bar here, w in R^n there exists an
invertible nXn matrix A such that A.v=w. So what I am saying is
that, let us take this as a fact okay, this fact can be independently
proved. It is not part of what I am now taking about so I do not
want to spend time on this. But what does this fact mean for the



orbit  of  a  vector  v  is  what  I  am  interested  in.  Suppose  this
statement is true, given any to nonzero vectors v and w there exits
an invertible matrix A such that A.v=w.

(Refer Slide Time: 13:08)

Then this implies that orbit of v, remember in order to get this w
has  to  be  nonzero  also  is  all  nonzero  vectors.  In  R^n in  other
words it  R^n minus the element 0.  Okay, because if  you recall
what is orbit of v, by definition it  is A.v as A varies inside the
group, in this case GLn. So you take A.v as A varies but because
of this fact you give me any w in R^n minus 0, there is an A such
that A.v=w. So every w will be in the orbit. So in this case there
are  two  orbits:  0  vector  is  an  orbit  by  itself,  and  all  nonzero
vectors are an orbit by itself, one orbit together. 

(Refer Slide Time: 14:05)

So, now G acts on G by left multiplication right. In this case what
happens? So take an element s in G. What is the orbit of s? Let us
calculate this, orbit of s is gs, as, because gs is just in this case
action by left multiplication, so when I write gs I mean actually
the multiplication in the group. 

It is gs has g varies over G. We claim that orbit of s, so again it is
s, okay, is all of G. Why? So the proof of this. So a priori this is a
subject of G right, it is a subset of S which is of course G, orbit is
a subset of S. In our example, it is G. Why is orbit of s equal to G?
So take any t in G okay, let t be any element of G. 



Can we find a group element g such that gs=t? See again let me
remind you, orbit is the subset of capital S through which small s
travels under the action of G. So s fixed, whenever we talk about
orbit the small s which is an element of S is fixed. And you are
applying all group elements to it. And what you get is the orbit. So
now in order to prove that Os=G, take any element of G which I
am calling t and we want to find a group element g such that gs=t. 

(Refer Slide Time: 16; 22)

Of course we can find such an element. What is g? g is simply ts
inverse  right.  If  you  take  that,  because  here  G  is  playing  two
avatars here remember. G is the group as well as the set. If you ts
inverse time s. What do you get? This is ts inverse s which t. So
every element, so this means that every t is in the orbit. So Os=G.
So again the orbit is all of G. 

And finally let  us look at the last  example, G acts on itself by
conjugation.  And this  is  more  interesting  okay, here  the  action
remember, is g*s, I am going to now use * because here it is not
multiplication of group, gsg inverse. Right, so recall. Now let us
look at the orbit,  for example orbit of e, Oe, is I take arbitrary
elements of g and apply *e. This is by definition of the action g e g
inverse, as g is in G. But geg inverse is e for all g, so geg inverse
is e for all g in G.  So this is just e. So orbit of e is e. 

Now let us go back to the pervious example, I said orbit of  every
element  is  equal  to  G.  And in  fact  I  should  probably  spend a
minute more on this. Just to illustrate this. What is orbit of e in this
example? It is ge has g varies in G. This is just G, okay, so I have
proved that the orbit  of every element is G, so this  checks out



here, the orbit of e is G, in particular orbit of e is G. But whereas
conjugation behaves very differently. Orbit of e is just e. 

(Refer Slide Time: 18:57)

Okay, now suppose for a moment that G is abelian. Then what is
the orbit of, let us take an arbitrary element s in G. Then Os is by
definition g*s, g in G. This is by definition gsg inverse g in G. I
have assumed that G is abelian. If G is abelian this is same as sgg
inverse g in G. But then sgg inverse is s right, this is true for all g
in G. So this is  just  s,  so orbit  of  s is  s.  So if  the group G is
abelian,  orbit of an element is just that element. So these are the
five examples, in the fifth example we get something interesting if
the group is abelian. 

(Refer Slide Time: 20:14)

So  now  coming  back  to  orbits,  hopefully  it  is  clear  by  these
examples, if G is a group an arbitrary group acting on a set S, if
you take a s in S, small  s always contain s right. So orbits are
never empty and they always contain the elements. 

Why  is  this?  Because  remember  Os  is  gs  as  g  varies,  so  in
particular, can take g to  be e.  So es  which is  s  belongs to  Os
always okay, orbits contain small s but they could be just small s
or they could be all S. So in this example of abelian group and
action by conjugation the orbit of an element is just that element,
nothing else, whereas in the action by left multiplication orbit is
all of the group, all of the set. 



In the action GLn(R) on R^n, orbit of the zero vector is just the
zero vector, but orbit of any other nonzero vector is the set of all
nonzero vectors. And in these two actions the action of rotations
on the three vertices or the action of Sn on the indices 1 to n,
orbits are the entire sets. 

So orbits are at  least  going to contain small  s,  orbit  of small  s
contains at least small s and it can vary in size depending on the
action. 

So we have seen examples of different kinds of orbits. So in the
next videos we will study further about orbits, and other important
properties of actions and using these properties we will prove our
main theorems in the rest of the course. Thank you.
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