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So this  notion is  well  defined,  because any two representations
have  either  even  number  of  transpositions  or  odd  number  of
transpositions. So, now let us observe that even permutation have
an interesting property. 

(Refer Slide Time: 00:30)

So, before that, let me quickly give you an example. So you have,
let us take S3, consider actually it is (12) (32). so this is in S3.
Right, you can immediately conclude that, σ is even. Because, it is
a product of 2 transpositions. Right, as we said in the theorem, it is
possible that it is also some other, maybe it is a product of some
other number of transpositions. But they must also have an even
number. So, σ is even. On the other hand, another example is, any
transposition is  odd.  Right,  because if  you take (12) it  requires
exactly 1 transposition.  So it must be odd. 

(Refer Slide Time: 01:49)

What about a 3-cycle? I claim a 3-cycle is even. Why is this? So
example if you take (123) right, let us try to write this as a product
of 2-cycles. And we saw this yesterday, it is same as (12) (23). Is



this right? 2 goes to 3, so 2 goes to 3, 3 goes to 2 and 2 goes 1, so
3 goes to1, 1 goes to 2. So, this implies, 1 (123) is even. Of course
this is true of any 3-cycle. More generally, a K-cycle is even if K
is odd. And it is odd, if K is even. 

So,  this  is  a  confusing situation.  But  it  is  clear  right?  We saw
earlier that a 2-cycle is dd. Because, 2-cycle is transposition.  A 3-
cycle is even okay, 3 is odd but 3-cycle is even. Why is this? 

Because  if  you  take  a  K-cycle,  and  we  have  written  this  as  a
product of transpositions earlier, and this turns out to be (i1 i2) (i2
i3) (ik-1 ik), right, and again let me repeat once more that if you
have one representation, as a product of transpositions, that will
allow you to determined whether the permutation is even or odd.
Because,  every  other  permutation,  must  have  a  same  number,
same parity, the number of permutation must have same parity. 

Now  how  many  transpositions  are  there?  There  are  K-1
transpositions here. Right, because 1, 2, up to K-1. So this tells me
that if K is odd, implies K-1, so, this is σ, if K is odd, K-1 is even
implies  σ  is  even.  Because  it  requires  K-1  transpositions.  Of
course, if this is if and only, or you can write it like this, K is even
means K-1 is odd, so σ is odd. So, a K-cycle has, K-cycle is odd
precisely when K is even.

(Refer Slide Time: 04:38)

So, we can define now, sometimes it is useful to talk of sign of a
permutation. So sign of σ is either 1 if σ is even, -1 if σ is odd.
Okay, so this is the sign of σ. So, sign is just 1 if it even -1 if it is
odd. 



So, let us come back to the even permutations and look at them a
bit more carefully. So, we want to prove a proposition, product of
two even permutations is even, inverse of an even permutation is
even. 

So,  if  you  take  a  couple  of  even  permutations  and  take  their
product, it is even. If you take an even permutation, and take its
inverse  is  also  even.  Why is  this?  If  σ1 and σ2 are  even,  that
means σ1 can be written as a product of τ1 up to τr. Right, τk
where K is even. Similarly τ2 σ2 can be written as some ρ1 up to
ρt then t is even. What is σ1 σ2 now? This is τ1 τk, ρ1 to ρt. Right,
this is a product of transpositions. 

So, if k and t are even, then k+t is even. Right, that is all we need.
If k and t are even k+t is even. This implies σ1 σ2 is even, because
the product decomposition of σ1 σ2 requires an even number of
permutations. This is even, this is even. 

(Refer Slide Time: 06:56)

Now on the other hand if σ is even and say σ is σ1 up to σk. So, k
is even. What is σ inverse? I claim, σ inverse is σk inverse, σ(k-1)
inverse up to σ2 inverse σ1 inverse, right, this is clear, because in
general,  in  any group,  recall  in any group G,  (ab) inverse is  b
inverse  a  inverse.  So,  σ1 to  σk whole  inverse  is,  you take  the
inverses  and  multiply  in  the  reverse  order.  σk  inverse  …  σ1
inverse. Now, if σ1 is 2-cycle, σ1 inverse is actually σ1. Because



remember (1 2) times (1 2) for example, is e. so this is σk. σk-1 …
σ2 σ1.  So,  these  are  all  transpositions,  σ  inverse  is  also  even.
Because, it  requires again k many transpositions which is even.
So, σ1 inverse is even. Right, if you have a product of two even
permutation it is even. Inverse of an even permutation is even. So
because this is proof of the proposition. 

(Refer Slide Time: 08:31)

So, now let us define a subset An. These are {σ in Sn, σ is even}.
So this the subset consisting of even permutations.  Right,  I am
taking  all  the  even  permutations.  By  the  proposition  okay,  so
actually almost by the proposition, An is a subgroup of Sn. Let see
what  is  a  subgroup  of  a  group?  It  must  include  the  identity
element. So I didn’t write it in the proposition. But I should say it
now. Certainly, what is the identity permutation? It is even right,
because it requires 0 transpositions. 

So, this is 0 transpositions. We do not need any transpositions to
write it. So, identity certain even okay, right, if you think about it.
Identity is a certainly even. And if you take two elements of An.
The  product  is  again  in  An.  That  was  the  proposition.  If  2
permutation are even, the product is even, if you take something in
An, its inverse is also in An because it is even.

(Refer Slide Time: 10:08)

So, An is called the “alternating group”. And it is subgroup of Sn.
Okay, now let me just quickly mention one fact about An. Namely,
what is its order? 



So, now I am going to introduce a homomorphism, consider the
group homomorphism φ from Sn to {1,-1}. So before I tell you
what φ is, just a word about what is {1, -1}. {1, -1} it is group
right, this is a group under multiplication. So, if you wish this is a
subgroup of nonzero rational numbers under multiplication, if you
wish. But abstractly, it is a cycle group of order to. Okay, so what
is the group homomorphism φ? 

I will define φ(σ) to be sign (σ).  Okay, if σ is odd, it goes to -1, if
σ is even, it goes to 1. So, first all of, φ is a group homomorphism.

Right, this is because, φ is a group homomorphism because of the
proposition. That we just did above. Right, because if φ(σ1 σ2), so
almost by the proposition actually, we need to be careful. So, what
is σ1 σ2. So this is sign  σ1 σ2, right. Which is another way of
saying, you write σ1 as a product of transpositions. And see how
many there are. If it is odd sign is -1. If it is even sign is 1. 

But by the same idea that we used in the proposition, we can first
write σ1 is a product of transpositions. And then write σ2 as a
product of transpositions. Put them together. If σ1 is I think I used
τ1 … τ k, σ2 is ρ1. … ρt, then σ1 σ2 is right, now if k is odd, t is
odd, k, t are both odd. 

First let’s start with k, t are both even. Then k+t is even. k,  t are
both odd. Then k+t is even right, two odd numbers add up to an
even  number.  One  odd,  one  even  right,  exactly  one  of  the  2
numbers k and t is odd.  The other is even. Then k+t is odd. This is
the proof of this. 



Because sign of σ1 is determined by whether k is odd or even.
Sign of σ2 is determined by whether t is odd or even. So in this
case you have sign σ1 and sign σ2 are both 1 and the product is
also 1. In this case we have sign of σ1 and sign of σ2 are both -1.
So, -1 times -1 is 1, which is the sign of σ1 σ2, because the σ1 σ2
is even. And here one is even, one is odd. So, it is 1 times minus 1,
which is -1.

(Refer Slide Time: 14:29)

Okay, so φ is a group homomorphism. I am going fast here may
be,  but  I  hope  this  is  clear  enough.  So,  φ  is  a  group
homomorphism. What are the other properties of φ. 

So φ is onto. Right, because certainly both, because Sn contains
even permutations as well as odd permutations. Right, because it
contains both even and odd permutations. Clearly it is onto. Some
even things, for example, 2-cycles are odd 3-cycles are even. And
let us take, so here I am taking n at least. So I am going to let us
say n is at least, in all these considerations n is at least 2. If I take
n=1 it is not interesting. So always assume, because if you take
n=1, then there is only one permutation that is even. 

So, now I claim that kernel of φ. What is kernel of φ? These are
the  things  that  go  to  the  identity  element  of  {1,  -1}.  What  is
identity element of {1, -1}? It is 1. So, all permutations which go
to 1. In other word, all  permutation sthat are even. So, this the
precisely An. Right kernel of φ is An. 
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This is because An is precisely the set of even permutations. Now
the first isomorphism theorem says, Sn mod An is isomorphic to
{1, -1}. So, in particular, from the counting formula, says that |Sn|
is equal to |An| times cardinality of this group, which is 2. Okay,
and we know this is n factorial. 

(Refer Slide Time: 16:59)

So,  we have n factorial  equals  2|An|.  So this  implies  |An|  is  n
factorial by 2. So, upshot of this is, exactly half of the elements of
Sn are even the other half are odd. So, of the n factorial many
elements of Sn, half are even, half are odd. And even permutation
is are nice because they form a group. So, now it is just a quick
check for you. Can you also take odd permutations and see i they
form a group. 

(Refer Slide Time: 17:57)

So, a quick question for you. Do odd permutations also form a
group? The answer to this is an oblivious no. For several reasons,
first identity is not there right, because identity is even. So identity
is not odd. This is one reason, that is good enough to conclude that
they are not a group. 

But also remember if you take (12) and (34) are both odd. But the
product is even. So this amounts to saying that sum of two odd
numbers  is  even.  So just  like even numbers in integers form a



subgroup but not odd integers, similarly even permutations form a
subgroup,  but odd permutation do not. 

Okay, so this the end of my video about symmetric groups. So,
just for recap what we have done is, what we have learned how to
use cycle notation for permutations.  We learned how to write a
given permutation as a product of disjoint cycles. Using that we
can figure out the order, the order of a K-cycle is K and order of a
product  of  disjoint  K-cycles is the LCM of the orders of those
disjoint cycles. 

Then  we  also  saw  that  any  permutation  can  be  written  as  a
product  of  the  transpositions,  not  necessarily  disjoint  and  not
necessarily unique, but we proved a big theorem saying that the
number of transpositions required is always even or always odd.
Using  this  we  have  defined  the  notion  of  odd  and  even
permutations and we saw that even permutations form of subgroup
of the symmetric group. We called it the alternating group An. And
we finally saw that order of An is exactly half of the order of Sn.
So, An has order n factorial divided by 2. That means of the n
factorial permutations in Sn, exactly half are even, the other half
are the odd. Thank you. 
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