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In the last couple of videos we looked at the symmetric group on
N  letters,  we  saw  how  to  represent  permutations  which  are
elements of SN as cycles and we learned that any permutation can
be written as a product of disjoint cycles and we also saw that any
permutation can be written as a product of transpositions which
may not be disjoint, we saw that a cycle of length K has order K
and if we have a product of disjoint cycles the order of the product
is simply the lcm of the individual orders. So these are the various
things that we have done in the last few videos. I want to now
spend  more  time  on  writing  a  permutation  as  a  product  of
transpositions.

(Refer Slide Time: 01:04)

So if you recall one of the example from, from the previous video
we wrote  the permutation (12)(13)(14)  and we saw that  this  is



same  as  (23)(25)(12)(45)(15),  okay,  so  this  is  the  same
permutation  but  on  the  left  hand  side  we  have  a  product
description which has which requires 3 transpositions on the right
side we have 5 transpositions okay, I, I remarked on this last time,
the description product of transpositions is not unique and even
the  number  of  transpositions  that  is  required  that  is  also  not
unique, we have 3 here we have 5 here. 

However what is unique is whether we need an odd number of
permutations or transpositions are even number of transpositions,
so this is one of the examples. We saw another example, we saw
that if you take the 3-cycle (132) this can be written has (12)(13),
this  can  also  written  as  (13)  (32),  okay  so  here  we  need  2
transpositions, in this also we need 2 transpositions, both even, of
course in this case both 2.  In this case these are both odd, even
though it is 3 and 5. 

So the theorem that I want to prove in this video and it will take
me some time to prove this,  we will  do a various examples  to
understand  the  proof  and  then  I  will  prove.  The  theorem  is
informally if you want a theorem it says that if permutation as a
description of the product of transpositions in 2 different ways the
number of permutations the number of transpositions required in
both the things have same parity, so they are both even or they are
both odd.



So let me write this more precisely, mathematically, how do we
write this? Let me write this as fallows. Let ρ be a permutation, so
I am going to use a new Greek letter because I am going to use tau
and σ to denote transpositions, so you read this as a rho, rho, okay
so let this be any permutation. 

Suppose it a 2 representations. Suppose that rho is on the one hand
it is σ 1σ 2… σ k, on other hand it is also same as tau 1 , tau 2 , tau
t, okay where these are all transpositions, σ1 through σ k and tau 1
through  tau  t  are  2-cycles,  remember  transpositions  are  just
another name for 2-cycles. So what is the situation? We have a
fixed permutation rho, and we have written in fashion as  σ 1 to σ
k and in another fashion as tau 1 to tau t. Certainly we cannot say
k = t but what we can say is that, then both k and tau, sorry t, k is
the number of σs and t  is  the number of tau-s,  okay so let  me
remove the word both here. So then k and t are both even or both
odd, so in other words, what I am saying is that they one of them
they cannot be one can’t be even and  the other odd, that is not
possible, either both are even or both are odd as illustrated in this
example, you have 3 and 5 both are odd 2 and 2 both are odd
okay. So you can have both odd or both even. 

So the rest of the video is focused on proving this theorem. It will
take some set-up, so I am going to slowly introduce to you the
techniques  involved,  so  this  is  not  so  easy  to  prove  though  it
would be, as we proceed with the proof, hopefully you will follow
the proof and it  makes sense to you but the proof is somewhat
lengthy.
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So let us systematically prove this. The goal of this video is to
prove this theorem, okay, so I will systematically and slowly go
through the  proof.  So in  order  to  prove this  let  us  introduce  a
polynomial, so let us introduce a polynomial okay, so if you are
not  very  familiar  with  the  notion  of  polynomial,  do  not  worry
about it, we do not need a lot about them, it is just a formal thing
and I will do enough examples to make it clear.

So I am go to call this polynomial f x1 up to xn, so think of x1
through xn as variables, are variables or indeterminates. So think
of them as just meaningless symbols, okay, they do not have any
meaning,  they are  just  symbols,  so I  will  define this  to  be the
following. So I will start with x1, I will subtract from it x2, then I
will subtract from it x3, x1-x2, x1-x3, I will do it all the way up to
xn, okay so x1 minus the rest, one by one, then I will start with x2
okay and I will x2 to the right of x2 there is x3 so I will start with
x3, x2  minus,  okay so to basically what we have is x2-x3 , x2-x4
and up to x2- xn, all the way and I finally have x(n-1)–xn , okay
so this is the polynomial and formally, if you write compactly if
you want to write this this is written like this.

(Refer Slide Time: 07:53)

We take this disjoint, product this symbol stands for product, you
are all familiar with the summation sign, this is just the product



sign, we take i and j distinct,  i<j,  i can be anything from 1 to n-1
and j can be anything from 2 to n right. i can’t n  be because i in n
there will be no j, j must be strictly more than n, similarly j cannot
be 2 because j must be strictly more than 1 so this is the product.
For any pair of indices where i is less than j, you introduce a term
xi-xj oaky.

So and remember n is fixed in the theorem. We are working with
the symmetric group of n letters, n is any positive integer, we do
not want to work with any specific one, the theorem works with
any positive integer.  But as an example what would be x1, x2 so
f(x1)  is just, that does not exist,  there is no, we don’t have two
indices like that if you have n =1. So f(x1, x2) would be simply
x1-x2. There is just one pair of indices,1 and 2. 

What would be f(x1,x2,x3)? It would be, you take a x1-x2 , x1-x3,
so starting with x1 you take every other index, 1 is fixed so 2 and
3 and then starting with x2 we take every other index and is there
is anything else? No, we have you have , here you have i =1 j=2
but the only possibilities here you have i= 1 in this case j=2 or 3
and i=2 you have j=3 okay these are the 3 possibilities there will
be 3 terms in the product. So this is x1-x2 times x1-x3 times x2-
x3. 



Similarly I will write one more and hopefully it will become clear
to you what is the polynomial. It is a, is an expression, think of it
as an expression involving variables x1,x2, …, xn. So here for i=1
you have for i=1 you have j =2, 3 or 4, right so for i=1 you have
j=2,3 or 4, so you have x1 –x2, x1-x3 ,x1-x4, okay so what about
i=2? So you have i=2, j must be bigger than 2, so j is 3 or 4, so
you have x2-x3 x2-x4, and then i=3 then j must be 4, so you have
x3 –x4 right.  So these  are  the  6  terms,  so  this  polynomial  for
x1,x2,x3,x4 will be these 6 terms and so on. Now we can think of
what x1,x2 f(x1,x2,x3,x4,x5) would be it will be x1-x2, x1-x3, x1-
x4, x1-x5 and so on. So this is what f is.

(Refer Slide Time: 11:47)

So now what I want do is I want to take an element sigma in Sn,
okay so σ is just a permutation on n letters and I want to define σ*
of  f  as  fallows.  So  σ  *  of  f  will  be,  so  f  is  remember  this,
sometimes I do not write  the variables,  so we have so f  is the
product xi –xj, 1<i and i strictly < j and j <= n, so σ *f,  I will
define, so I am going to modify f so σ *f is a modification, I am
going to change f a little bit, of f using σ okay, so think of it like
this, σ *f is simply a modification using σ. How do we modify?
Remember what is σ? Sigma  just is a permutation of the letters.

So what I will do this, I will continue to take the product over it
pair i, j i strictly < j, but instead of xi-xj, I will have x σ i – x σ j,
oaky. This might seem somewhat mysterious but it is not, so I just
want  to  make  it  very  clear  to  you  because  it  is  important  to
understand what σ * f is before we proceed. 



So what is σ *f? I am going to start with f and modify indices
based on σ. So as an example, okay so let us suppose we take 2
variables so then so take n=2, so then f is simply x1-x2. So if you
take  now we are  dealing with S2 right  so n is  2,  S2 is  just  2
elements  e  and  (12).  This  we  have  seen,  the  order  of  S2  is  2
factorial, right and which is 2, it is e and (12) so if you take for
any σ we can define, so let us compute this in these two cases.

(Refer Slide Time: 14:34)

e * f is this is a compact way of writing, xσ i –x σ j, but if you
spread it out what would it be? e is identity element so nothing
changes so you have x (e of 1) –x (e of 2), but e of 1 is 1, e of 2 is
2. So this is just x1-x2, which is just f, right. 

On the other hand, what is 12*f? So this is x okay, so now it is
easier for me to use the letter σ, so then this is x (σ of 1) – x (σ of
2),  so when we right  σ of  i,  remember  σ is  a  function from 1
through n to 1 through n. So σ of i is simply the image of i, okay
under  σ. So when I write σ of i, I am actually thinking of sigma as
a function, so what is what is image of 1 under σ which is (12), it
is 2 so it is x2 –x σ 2 will be x1.

So this is not same as f right, this is actually –f. So here we have
changed the sign, x1-x2 becomes x2-x1. So this is what happens
when n=2.



Let  us do n =3 okay. So here what is f? Here f is x1-x2, x1-x3,x2-
x3 okay, and here S3 remember has 6 elements, so they are e, (12),
(13),  (13),(23),(123),(132) okay. Let  me do not  all  of  them but
illustrate the point, let me do σ = (13) for example. 

What is σ *f? So you start with f and you keep the order but you
just  change  the  subscripts  and  see  what  happens.  So  it  would
become x  σ 1  –  x  σ  2,  so  I  am looking it  f  here  x1-  x2 that
becomes this, x1-x3 becomes x σ 1 – x σ 3, and finally we have x
σ 2 –x σ 3.  So σ *f is (x σ 1-x σ 2) (x σ 1 - x σ 3) (x σ 2 – x σ 3). 

But now let’s actually compute these things. x is σ 1 remember is
σ is (13) so this is x3. σ 2 what does σ do to 2, nothing so it is 2, 2
is fixed by σ so x3 – x2. σ 1 is 3 so this is x3 – σ 3 is 1 so this is
x1, σ 2 is 2 so this is x2 minus σ 3 is 1, so this is x1. 

So σ * is (x3 –x2)(x3-x1)(x2-x1) and what is this? This is how do
we compare this with f, so every term remember here is switched
x1- x2 became x2-x1, x1-x3 became x3-x1 , x2-x3 you have a x3
–x2, so you have -,-, -.  So this is –f. Is that clear σ f is – f, because
f  is  a  product  of  3  terms,  σ  *f  became,  those  3  terms  are
interchanged,  the  order  in  which  the  2  terms,  x1-x2  is
interchanged this is – okay so this is –(x2-x3) –(x1-x3) , this is -
(x1-x2) right and so this is – f , -1 time -1 times -1 is -1, and then
you have just f.
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So σ *f is f. Let us do one more example let  us say T = (123), that
is another element of S3, so Τ is 123. So what is Τ *f same thing
so  f  is,  the  same  process,  it  will  be  different  but   the  same
procedure we must follow. f is x1-x2, x1-x3,x2-x3 so Τ*f will be x
(Τ1) –x (Τ 2 ) x(Τ1)- x(Τ3) x(Τ2) – x(Τ3) right so this should be Τ
1 is 2, Τ 2 is 3, x2-x3, Τ1 is 2, Τ3 is 1 so this is x2-x1, Τ2 is 3 and
Τ3 is 1, okay so this is x3-x1.

So now how do you compare  this  with f,  f  has  3  terms again
remember  that  f  has  3 terms x1-x2 ,x1-x3,x2-x3 here  we have
those three terms but unlike in the previous example one of those
terms has not changed x2-x3 remains x2-x3 but other two things
we have interchanged.  This and this  have changed size ,  right,
because it was x1-x2 in f, that has become x2-x1, it was x1-x3 in f
that has become x3- x1, x2-x3 remains as it is, so this is actually
just f because this is minus of that term times minus of that term,
-1 times -1 is 1 so Τ *f is f okay.

(Refer Slide Time: 21:31)

So what I want to now say is that and I hope you agree based on
these examples, so now I am going back to the  general situation,
if σ is a permutation in SN then σ * of f is either f or –f okay. That
is what we found in these examples right it becomes either f or –f.
Of course doing examples is no a proof of this, the examples are
supposed to give you an idea of why it  must be true and how to
prove it. And what is a proof?



So I won’t write this in detail because it becomes, it is easier if
you think about it yourself and try to write down a  proof, but I
will  give  you  a  basic  reason  why  this  must  be  true.  Because
remember f was product xi –xj okay, so it is over all i,j and σ *f is
the product x σ i –x σ j, over the same i and j. So if you think
about it because σ is a permutation σ is a bijection right remember
symmetric group is the set of bijections of this set. 

Because it is a bijection, as i varies over 1 to n or 1 to n-1, in this
case, σ i also varies, similarly σ j also is an element of 1 to n. So if
you take an individual term in f that is translated to some other
term only changes will be negative signs as we have seen in this
example. For example, x1-x3 became x3-x2 so we, we must allow
that  in  the  definition  of  f  we  have  xi-xj  were  i  is  strictly  <  j
always, so 12,13,23 right 12,13,23, in f you never have a bigger
index minus a smaller index.

f is defined to be x i- xj where i is strictly <j, but once you do σ *f,
that will no longer be the case. Sometimes we have a bigger index
minus smaller index: x2-x. Because if i<j certainly it is not true
that σ i is < σ j, that is not the case. But however that is just a
negative of, if you have a bigger index – smallest index, and that
is negative of smaller index – bigger index, which appears in f, so
f is a product of some terms, σ *f will be product of same number
of terms.

But some of these terms, it will be the same terms with possibly
negative sign, so if you now accumulate all these negative signs
you might either have + or –, as this example shows, you have 3



negative signs giving you –f when σ was (13), when Τ is (123)
you have only 2 negative signs, so that gave you f. So σ *f must
be either f or –f,  the same terms are preserved up to a change of
sign, so σ * is either f or –f. Let me say this is my proof. I won’t
go into a more formal proof, but  I hope this is clear enough for
you . So σ *f is f or –f.

(Refer Slide Time: 25:34)

Next I want to do, if σ and Τ are in SN, what is σ Τ *f? This is my
next question. σ Τ is another permutation right, so I can apply * of
it. How is it related to σ *f and Τ *f, okay. I want to understand
how is it related to this. So again I will explain this by the example
that we did. So take n = 3 and σ was 1 let’s see σ was 13 and Τ
was 123.  So what is  σ Τ, so σ Τ we are now okay we are all
become  comfortable  hopefully  with  products  of  permutations,
cycle products.

So here σ Τ will be 1goes to 2, and 2 is not, 2 is fixed by sigma, so
that’s 1 goes to 2, 2 goes to 3, 3 goes to 1, so that is 12 so you
close, 2 ->3 3->1 so 12 is a cycle 3->1, 1->2 so σ Τ is (12). And
what is σ Τ *f? If you now do the calculation that we have done
earlier, it is x, so f was remember I will write it again here for
convenience, f is x1-x2 , x1-x3 ,x2-x3. So σ Τ *f will be I will just
directly write is 1 ->2 in this so x2 and 2->1 so that is x1- x2, 1 ->
2 so x2 and 3 is fixed so that x2 –x3 and 2->1. So and 3 is fixed so
x2-x1 right.



 I will just look at the subscripts which are the indices of variables
and see where they go under σ Τ. So 1->2, and 

2->1, so 1st one changes sign and the 2nd one 1->2 , 3->3 so x2-x3,
this does not change sign, no change of sign. Here 2->1 and 3->3,
so here also no change in sign, right in the 1st one change in sign
okay. So what is this so this? This is –f right, because there is one
change of sign. So it is minus of x1-x2 and the other two are fixed,
so this is minus f, so σ Τ * so this is σ Τ 1st you multiply and take
*. 

(Refer Slide Time: 28:48)

On the other hand , what is Τ * f? It was, remember, here it is –f
but it is x2-, so it is f, but let me write what we got, okay, it is x2-
x3, x2-x1, x3-x1, right x3-x1, okay. So now let us apply, so we
have this, let us apply σ * to both sides, so σ * of Τ *f? What is
this see when apply σ *, I simply change subscripts by σ, so σ was
(13) right, so x2 –x3, 2 is fixed under σ, so it is x2 and 3 goes to 1,
so this is x2-x1, x2-x1, so 2->2 and 1->3, so this is x2-x3, 3->1
and 1 ->3, so you have x1-x3, and if you now compare this with σ
Τ*f okay. 

So let us compare them both, we have x2-x1 , x2-x1, x2-x3,x2-x3,
so this term is common and this term is common and we have x1-
x3, and x1-x3. So we see that, so they are  equal, they are same
right, so σ, so what we have is, σ Τ whole star f is applying σ * to



Τ * f. So you start with f, first apply Τ * then apply σ * to it. So
this is what we have in this example and I will now say this holds
in general, okay. So let me quickly say this. So in general we have
and why is this?

(Refer Slide Time 31:34)

What is the reason? And the calculations is the following. So what
is σ Τ*f? Which is by definition remember we take x and we apply
σ Τ of i –x σ Τ of j, remember again, when I for a permutation σ I
defined sigma * of f, how did we define this? Let us go back to the
definition of σ *, I start with f and each subscript I simply change
by σ, right.

So I change a subscript by σ , x σ I – x σ j. Here I am applying it
to σ Τ,  so I change i  by σ Τ,  j by  σ Τ.  But now, this is same as
and the product is over this set i < j, i greater than equal to 1, j less
than or equal to n, but σ Τ remember that it is composition right, σ
Τ is the composition of σ and Τ, the product in, the product in the
symmetric group, the binary operation of the symmetric group is
the compositions of functions.

So this would be same as x times Τ  of i x sub (σ of Τ of I) – x sub
(σ of Τ of  j).   I  am not doing anything in this step, I am just
observing that σ Τ of i is σ of Τ of i,  σ  Τ of j is σ of Τ of j,  but
what is this? This is applying σ to something, so this is σ * of
product 1<=i, i<j , j<= n of x Τ I – x Τ j, right, because if I take
this and apply σ *, applying σ * is by definition applying σ to each



subscript, so I am applying σ to each subscript, so this is σ * of
this.

But what is this? So this is σ * of this. But what is this, this is
exactly Τ * of product, the same product xi –x j right. 

Because originally you had x i - x j, you apply Τ * to it and then
you get this. But this, what is this? This is just f, so this is σ * of Τ
* of f, remember this is exactly what I have  claimed here, σ Τ * f
is σ* of Τ * f, okay. So, I do not need this interior parenthesis, so
just, okay, so in general I have this. 
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