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Before we look at some examples, I want to make an important
remark. Cauchy’s theorem also holds when G is not abelian, so
you remove the word abelian in the theorem, so G is a finite group
and  P  is  a  prime  number  that  divides  the  order  of  G  then  G
contains a element of order P, this is also true okay, this requires
more machinery to prove and we do this in  later in the course.

So after I develop more machinery required to prove this, we will
prove this. In fact we will prove what are called Sylow theorems
which contain this and which in fact say much more. 

So let me give you quickly an example to illustrate the fact that p
needs to be a prime number in the theorem. Consider the group, so
I am going to consider a few two by two matrices, so one zero



zero one, minus one zero zero minus one and one zero zero minus
one, minus one zero, zero one. 

So G is a group of order four okay, so G is a subgroup of, here the
operation  is  multiplication,  so  G  is  a  subgroup  of  GL2R,  so
remember this all, note these all are invertible matrices. They have
all  determinant one or minus one, so they are invertible matrices
it is subgroup of GL2. And  fact that it is subgroup is clear, I will
give this name, so just to, for ease of working of this, let’s call this
as E and let us call this as a1, let us call this a2, let us call this a3. 
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So G is  identity  element  that  I  am calling E,  right,  what  is  a1
square? a1 square is e, that is this matrix multiplied with itself,
that is same as a2 squared that is same as a3 squared. What is
a1a2? That is if you multiply these two matrices you will see that,
it is easy to say that it is a3. a1a3 is a2, a2a3 is a1. So this is the
entire group of structure on this. The data, multiplication table is
completely given by this. 

So G is order group in order four group, so G is an abelian group
of course, and in fact we have seen in a previous video that any
group of order of five or less is abelian , so this is certainly abelian
and you can see that from, I should written this, that is same as
a3a1 okay so that is easily verifiable from the given format,  so
these matrices are given you multiply these matrices, if you do not



know the matrix theory, to see that how to multiply matrices and
so on,  do not worry about it, just think about G as group like this,
with these operations, with this multiplication table, a1, a2, a3 all
have, G has one element of order one and three elements of order
two. 

Okay, so as I  said if  you do not  feel  comfortable with  matrix
representation, just do not worry about it, and think about G as a
group  consisting  of  four  elements  E,  a1,  a2,  a3  with  this
multiplication table, they are, a1, a2, a3 have order two meaning,
their squares of all identity and multiplying any two of them will
give you the third, in any order, so a1a2 is same as a2a1 which is
a3. This is a valid group and it is a group of order four. G is called
Klein four groups. Okay, it is called the Klein four group. 

Is  it  cyclic? Is it  a power of,  is  it  the group generate by some
specific element, it is not right, because it is certainly not group
generated by E, is it the group generated by a1, no a1 squared is
identity. So the group generated by a1 is just E a1, similarly group
is generated by a2 is e, a2, because a2 is also order two, same with
a3.
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So it is not cyclic, because it has no element of order four. Right,
in  order  for  a  group  of  order  four  cyclic,  it  must  contain  an
element of order four. In this case it does not, so this is another



group of order four, we have seen that there is a group of order
four namely the cyclic group of order four, this is  not a cyclic
group of order four. And it is actually an exercise which I will do
maybe later, that up to isomorphism these are the only two groups
of order four, both are abelian,  one cyclic  and the other is  not
cyclic. Now this is an important example to give you a various, to
illustrate various points.

(Refer Slide time: 07:04)

First of all, the converse of Lagrange’s theorem fails here, right,
the  converse  of  Lagrange’s  theorem,  what  is  the  Lagrange’s
theorem? If in an element,  in a group, the order of an element
divides  the  order  of  the  group.  On  the  other  hand,  here  four
divides order of G, which is of course, four, but G has no element
of order four. 

Similarly this example shows that p in Cauchy’s theorem must be
prime right,  because four divides the order of  group G, G is  a
finite abelian group, four divides the order of G, but G has known
element of order four.

The problem is 4 is not a prime. So only if a prime number divides
the order of a group, we can say there is element of that order, and
that of course checks out here, because order of the group here is



four, and the only prime that divides that is two, and certainly G
has a element of order two.  

On the other hand if G is a cyclic group of order four, say G is
one,  a,  a2,  a3. Then also G has an a element  of order four, or
element of order two in, namely a2, Cauchy’s theorem applies to
this and says that if two divides four, two is a prime number it
must have an a element of two, so it does because it a square. 

So in this case there is only one element of order two, because
order of a as well as order of a squared and order of a cube is two,
is four rather, order of a square is two, order of e,  let call  this
element as e, order of e is one. So the cyclic group of order four
has  one  element  of  order  one,  one  element  of  order  two,  two
elements  of  order  four. Whereas  the  Klein  four  group has  one
element of order one, three elements of order two. 

There is always in element of order two in a group of order four
by Cauchy’s theorem, in an abelian group of order four. But of
course every group of order four is abelian so  there is no need to
separately say abelian but Cauchy’s theorem also say if you have
10 order 10 abelian group, it must have order two element and an
order five element.

(Refer Slide time: 10:13)

So here I am doing problems. Problem one, so let’s start with a
couple of very easy problems, just to get started, so let us say G be
a cyclic group and let H be a subgroup of G, then G mod H is
cyclic okay. 



So first of all recall that G is  cyclic implies G is abelian, in a
cyclic group is certainly abelian, implies H is normal in G, so G
mod H is a group, so in order to even say G mod H is a cyclic
group, first we need to know it is a group, but it is a group, so we
need to know observe that it is a cyclic group. 

What is a cyclic group? Suppose G is generated by A, so G is
equal to A power n, n belongs to Z. So powers of A exhaust all of
G, so G is every element of G, is power of A, now what is G mod
H? G mod H is g times H, where g is in G, okay, these are the left
cosets of H in G.
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So we claim that, what is your guess, we are trying to show that G
mod H is a cyclic group, if G is a cyclic group, G mod H is a
cyclic group. In the other words, we have to exhibit a generator for
G mod H, it is obvious to guess what? If G is generated by A, AH
generates G mod H, and this is easy, because you take gH, for g in
G,  if  g  is  in  G right,  g  equals  A power  N,  for  some A.  Right
because A generates group G, every element of G is a power of A,
so gH is equal to (A power N)H, but by the operations of cosets,
this is just AH power N, so G mod H, is equal to AH, power N, N
belongs to Z. Of course, we are not saying that they are all distinct
elements,  some of them will collapse, if it  is a finite group for
example, they will collapse. But that is irrelevant here, G mod H is
generated by AH, so this is the solution, so if G is cyclic then, then



G mod H is cyclic. And in fact the coset of the, element, generator
generates the quotient group. 
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Let us do one more problem which is very similar and also very
easy. If G is abelian, and H a subgroup of G, show that G mod H
is abelian okay. As I said this is also extremely easy, to show that a
group is abelian, you have to start with two elements of the group,
in this case the group we are interested in showing is abelian is G
mod H, so let us take two arbitrary elements, AH, and BH. These
are a two left cosets, what is the AH times BH. By definition of
the group operation on the quotient groups, this is ABH, but AB is
equal to BA, because your group is abelian and this is same as
AH, okay, so this is okay, this is also a trivial exercise, let us do
one more interesting exercise.

(Refer Slide Time: 14:39)

This is slightly more work, so more interesting. Suppose G, let ZG
be the centre of G, okay, if  G mod Z is cyclic show that G is
abelian. 

In order to first solve the problem, let’s first we call what is the
centre,  remember  ZG is  all  elements  A in  G,  which  commute
everything else in G. So A in G such that that Ag is equal to gA to
all g in G, so this is the centre. So now we are assuming that G
mod ZG is cyclic, we want to show Z is, G is abelian here, okay,
in order to show abelianness as in the previous problem we have



to take two arbitrary elements,  and to show, we want to show,
show that AB equals BA, right let us keep this in mind, we want to
show AB = BA.

So  now  since  G/Z(G)  is  cyclic,  it  has  a  generator,  right  it  is
generated by some element of G/Z(G), right so this G/Z(G) is a
cyclic group it is generated by an element of that, say g Z(G), so
an element of  this  simply  a left  coset,  so take a left  coset  and
suppose that it a generator, that means everything in G mod Z(G)
is a power of this, so in particular we have AZ(G), see AZG and
BZ(G) are elements of G/Z(G) so they are generated by gZ(G). So
it is some g(Z(G) power I and BZ(G) is some Z(G) power J, for
some integers I and J, okay that means because gZ(G) generates it
these two elements are power of it, so that means AZ(G)=(g power
I) Z(G) and BZ(G)= (g power J)Z(G), this is the meaning of coset
multiplication. But now let us pull this relation back to the group
G.  So  this  means,  so  what  is  this  mean?  That  means  A times
something  lets  x,  in  the  center  is  equal  to  g  power  I  times
something, where x and x prime are in the center, right because A
times that, as cosets they are equal, that means A times an element
of this is equal to an element of this, so A times x will be equal to
this.

(Refer Slide Time: 19:07)

So I can rewrite this as A= g I power X for some X in Z(G), okay
so this X and X prime I am interchanging so it is  actually this X



here is this x prime times x inverse because X and X prime are in
the center, X prime times X inverse is also in the center, so I am
renaming everything to call it X. Similarly we have B = g power J
times Y for some Y in the center, so far fine, right, A = g power I
times X for some X in the center, similarly B = g power J times Y
for some Y in the center. Now let us go ahead and calculate AB,
now  that  we  have  written  everything  in  terms  of  elements  of
capital G and not as cosets, let us write AB. 

So this is g power I X g power J Y, but now what is X and Y, X
and Y are in the center, so they commute with everything, so this
is same g power I, g power j, X, Y right, this is g power I +J, XY,
on the other hand, what is BA? This is g power J, Y g power I, X
again using the fact that X and Y are in the center, AB=BA, so I
am using the fact that g power I and g power J is g power I +J and
X and Y are in the center. So this shows that because A and B were
arbitrary elements of the group and they commute, G is abelian
okay.

(Refer Slide Time: 22:00)

So if G mod is the center cyclic, G is abelian. 

So the next  problem and this  is  the problem that I  used in the
proof of Cauchy’s theorem. It says the following. Let G be a cyclic
group. Suppose that, which is finite so this is finite cyclic group.
Suppose that M divides, M is a positive integer, suppose M is a
positive integer that divides the order of G, okay, so then show
that G contains an element of order M. So that is the problem, so
solution, so this is problem 4 I think okay. 



Solution is the following. So suppose that G is generated by A
right, so G is finite cyclic group okay, so G must be of the form E,
A, A2 , A power (N – 1), where N is the order of  A as well as order
of the group, right so G is like this so G has N elements and order
of A is N. And if M divides consider the element A power N /M.

(Refer Slide Time: 24: 01)

So  consider  this  element,  A power  N/M.  See  that  because  M
divides N and M is a positive integer remember M is a positive
integer, N by M is also an integer so A power N by M is a valid
element of the group, it is A multiplied by itself N by M times, so
A power  N by  M power  M is  of  course  A power  N which is
identity, remember as I have repeatedly said in the past, you can
apply the usual exponential rules to group operations.

So A power N by M, if you call this element B, B power M is E,
can we say order of B is M? If so, we are done, right, because we
are trying to show that G contains an element of order M, if order
B is M we are done, but actually we cannot right away say this, in
order to say order of B is M, you have to say, no not yet we can’t
say this yet, what is order of B? Order of B is the least positive
integer  D  such  that  B  power  D  is  E,  right,  certainly  M  is  a
candidate  for  it  B power  M is  E,  but  we have  to  rule  out  the
possibility that something less than M has this property.
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So if B power D is E, so let us say, for suppose for some D < M,
we have B power D is equal to E. Then let us see what are the
consequences of this, B power D is E, this means A power N/M,
so remember A power N/M is DB, power D is E, right this means
A power (ND /M) is E but if D is less than M , ND/M is less than
N correct, because D by M is less than 1, but this contradicts, we
have a power of A equal to E but that power is less than N, we
have a contradiction, we have contradicted the fact that order of A
is N, right.

(Refer Slide Time: 29:40)

Because order of A is N means N is the smallest positive integer
such that A power N is identity, but here we are getting A power
(ND/M) is  E  and ND/M <N.  So this  a  contradiction and  only
assumption that we could have possibly made incorrectly was that
D is less than M, so we must have, so A power M identity and A
power D is identity implies that D is at  least  N, so order of B
power M I, sorry I should not have said A power M, B power M is
identity where B is A power N/M, B power M is identity and no
smaller power of B is identity. So order of B is exactly equal to M
and this completes the solutions of the problem because we want
to show G contains element of order M and we have shown that
because B is that element okay. 

I will only remark one more time that we have seen the example
of Klein 4 group, where you have a group of order 4 yet the group
does  not  contain  an  element  of  order  4,  of  course  this  is  also



illustrated by the symmetric group on three letters S3, S3 has 6
elements, but it not cyclic. 

So it has no element of order 6, so the statement that G contains an
element of order M if M divides the order of G is simply false if G
is not cyclic. So let me remark, it is crucial that we assume G is
cyclic in this problem, because   example take G to the Klein four
group or G is S3, this has order of 4 and this has order 6, but they
are not cyclic, not cyclic, and they have no element of order 4 or
order 6 respectively, okay. I will stop the video here, hopefully
these  problems  gave  you  some  idea  of  how  to  apply  various
results  that  we  have  learned  and  you  should  try  to  do  more
exercises that I have been giving in the videos using these ideas.
Thank you.
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