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So in this video I am going to prove an important theorem, a
special case of important theorem called Cauchy’s theorem.
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So this 1s a good application of the concept of quotient groups, so
this is useful to you will understand in proof why is it is useful to
look at quotient groups. So Cauchy theorem says that so this is the
following, so let G be a finite abelian group. So it is a finite group
so meaning it has only finitely many elements and it is an abelian
group meaning any two elements in G commute with each other.
Suppose that a prime number P divides the order of G.

So P is a prime number that divides the order of G, then G has an
element of order P, so then G has elements of order p. So this is
Cauchy's theorem. We will first prove this and then look at why
this 1s a surprising statement. If G has an element of order p it is a
strong condition on the group, so and it is important to note that P
must be a prime number. So all this we will see after we prove the
theorem and see where we use the prime number hypothesis.



Again let us see the statement. G has an element of order p what is
an element of order? Order of an element, recall order of an
element A is the least positive integer d such that A power d is
identity. So there is such an element in the group G. so we are
going to consider the size of the group, so we will prove this in
two cases, we will consider two cases. So the cases are the
following.

Casel: G contains, G does not contain a subgroup H such that 1 is
strictly less than order of H which is strictly less than order G. So
remember G is a finite group so I can talk of order of G, is the
number of elements, so suppose G does not contain a subgroup H
which has this property. That means cardinality of H i1s strictly
greater than 1 means H contains elements that are different form
identity element. And order of H less than order of G means H i1s a
proper subgroup.
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If G does contain such an element, so then I will first solve this
problem in, prove the theorem in this case. So choose an element
A in G such that A is different from E, E is the identity element.
Why is there an element A such that A is different from E? Such
an element exists because cardinality of G is greater than 1. Why
is cardinality of G is 1s greater than 1?7 Because I am assuming that
a prime number p divides the order of G, so if cardinality or order
of G 1s 1 certainly no prime number divides it, prime numbers are



2,3, 5, 7 and so on, so order of G is at least 2, that means there is
an element A which is different from E.

Consider the subgroup generated by A. Now what are we
considering in this case? This case we are assuming that that G
does not contain a subgroup H which is non-trivial and proper,
because A 1s different from E, by hypothesis A is different from E
by choice. So the subgroup generated by A cannot be identity and
hence it has to be all of G, because G does not contain any
subgroup that is non-trivial and proper, if A is the subgroup
generated by A, then it is non-trivial because A is different from E,
so it must not be proper so it i1s equal to G. On the other hand, so
in particular G is cyclic group. What is the order of, note that if
you have a cyclic group generated by A, order of G is equal to
order of A.

Because, this is because, G is nothing but E, A, A* , A power
(order of A)-1, you take powers of A and go all the way up to
(order of A)-1, the next power which 1s A power order of A will be
E, so this is G, how many elements are here? Order of A many
elements are there, so that is the order of G. So now and what are

the assuming? We are assuming that P, we assume we know, P
divides order of G which is order of A.

So now we have to exhibit an element of order P, so if P divides
order of A, so I am going to, so best way to complete now 1is
through the following exercise, so I will leave it as separate
exercise and do this later in a separate video or may be in the same



video, but it will interfere with the proof of Cauchy’s theorem. So
I don’t want to spend time on this, if G is a cyclic group of order
N and M divides N, then G contains an element of order M.

So this 1s not a difficult exercise at all and this is a very general, so
M, N are positive integers. And it has nothing to do with
primeness, so G is a cyclic group of order N and M 1is another
number that divides N, then G contains an order of element M so
this so this 1s sort of a converse to Lagrange’s theorem, which I
proved earlier, what is Lagrange's theorem? It says that G has a
finite group and we have element its order divides the order of the

group.
I am saying now that if I am further assuming G cyclic and a

number divides the order of group then there is an element of that
order.
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Now the by the exercise, G contains an element of order P,
because G is cyclic, that is what we have concluded, G 1s a cycle
group, so and P divides the order of the group, so G has an
element of order P, so if the group 1s assumed to be cyclic, very
strong statement is known, much stronger than Cauchy’s theorem,
it says that if P is a prime number, and P divides the order of the
group, and G is abelian, that is the version of the Cauchy’s
theorem that we are doing now, there is an element of order P. But
the exercise 1s saying that if G is cyclic, life 1s much simpler, for
any M dividing the order of the group, there is an element of that
order.



So I will do this exercise later, but we are done, assuming that
exercise. So now let us go to case two, so in case two what is the
complement of case 1, case 1 was there is no subgroup of G which
is non-trivial and proper, so case 2 would be there is a subgroup
of G which is non-trivial and proper, so there is a subgroup, H of
G, which is non- trivial and proper, that is H is different from the
trivial group, that 1s H is different from G also, so we have 1
strictly less than order of H which is strictly less than order of G,
okay.

Now I am going to use induction on G, so what does the theorem
say, theorem says that if G is a finite abelian group and a prime
number divides its order then G contains an element of that order,
so what would be the base case of induction, because I want to
take an order, which is divisible by a prime number, order of G is
two, G is a and e and order of G is divisible by two and order of a
is two, so only prime that divides the order of G is two and there is
an element of order two, this is okay, base case 1s proved.
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So now I can assume that up to some number all groups of that
order which are abelian and if a prime number divides them, there
is an element of order p. So now we know that order of H is
strictly less than order of G, so suppose that P divides order of H,
this is not necessarily true but suppose it is true. We only assumed
that P divides order G. Suppose that P divides order of H.



Then by induction because the order of H is strictly less than order
of G and we are looking, induction hypothesis is that anything
which has order less than the order of G the theorem goes, now H
is an abelian group, G is abelian that implies H is abelian,
abelianness 1s inherited by subgroups, any two elements of G
commute with each other, so any two elements of H also commute
with each other, so H is abelian, its order of H is G and P divides
order of H, so by induction H contains an element of order P.
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So this is the induction statement, but if H contains an element of
order of P then so does G. That is immediate right, if H contains a
of order P, then a belongs to H, order of a is P, implies a belongs to
G, H is a subgroup of G and order does not change, order of a is
order of a, so G contains the element of order of P, so this is the
easy case, if P divides order of H then we are done.

So, suppose that P does not divide order of (H), this can happen
right, P divides order of (H) or P does not divide order of (H), but
now recall counting formula, that we learned while proving
Lagrange's’s theorem. It says that order of (G), is equal to order of
H times order of (G/H), the index right, now since we have
assumed that G is abelian, every subgroup is normal right, in an
abelian group, G/H 1s a group and note that order of G/H is the
index of H in G, (G:H). Now if you look carefully at the counting
formula, the order of G is equal to order of H times order of G/H
right, and what is the hypothesis? Hypothesis is that, P divides
order of G.



And hence P divides order of H times order of G mod H, and a
property of prime number says that, P divides order of G mod H,
see P divides order of G, P does not divide order of H, so P divides
order of G mod H, this is a property of prime numbers, if P is a
prime number and it divides the product of 2 numbers, it must
divide one of them, and i1t does not divide H, is our hypothesis so
P divides order of G mod H and, note that order of G mod H, is
equal to order of G mod order of H, which is less than, order of G,
also because H 1s a nontrivial group, this is because order of G,
order of H is greater than 1, so induction hypothesis is okay, so in
order to make sure that, induction hypothesis is applies to G mod
H, we need to check that G mod H is abelian group, is that clear?

If G 1s abelian, G mod H is abelian, this is a very easy exercise,
that I will do later in a video, G mod H is abelian, order of G mod
H i1s less than order of G, and P divides, order of G mod H, that is
what I noted here, so induction hypothesis applies to G mod H. So
[ want to emphasise a very important point here that, I need to
assume that G is abelian okay, that is why I state in the original
theorem, that G 1s abelian.

Because if G is abelian only you can consider G mod H for an
arbitrary subgroup H, otherwise G mod H is not a group, it is just
a set of cosets. So now what does the hypothesis say? Induction
hypothesis so, by the induction hypothesis, G mod H contains an
element of order P, right, because G mod H is an abelian group, its
order is divisible by P, and its order is less than order of G, so it
contains an element of order P, but what are elements of G mod P,



they are left cosets of H in G, so say gH in G mod H has order P,
right.

This means gH power P is equal to H, because that is the meaning
of order, gH power P is H and gH is not equal to H. If order of gH
1s equal to P implies this, P is the smallest positive number such
that gH power P 1s identity which is H, in G mod H identity is H,
so gH power 1 because remember P is strictly more that 1 always,
P is a prime number so gH cannot be H and gH power P is H. But
what is gH power P that means g power P H 1s H, right

(Refer Slide Time: 21:12)

and of course gH is not equal to H, that means g power p is H and
g 1s not in H this is the meaning when you pull the element back to
G. g is an element of G, it is p-th power 1s in H and itself it is not
in H okay.

(Refer Slide Time: 21:17)

So g power p is in H and g is not H. Now let us denote by m the
order of H, okay, so I am just giving it a name. Let m the order of
H. Then what we have 1s by Lagrange’s theorem applied to H and
what 1s Lagrange’s theorem? It says that if you have a group and
an element in it, order of the element divides order of the group.

(Refer Slide Time: 22:08)



Order of g power p divides order of H which I called m, okay. If
order of g power p divides m and this is something I have showed
before, g power p whole power m 1s equal to e. This is the exercise
that, this came up in several places, if g is an element of group G
and order of g 1s let’s say a and then g power an is e for all n right,
so if here m is divisible by order of g power p, m is order of g
power p times something.

So g power p power m is identity. This means we have g power
pm is identity. I also remarked numerous times, that usual
exponent rules apply to taking powers in elements of groups. So
this 1s remember I can always switch the exponents. So, g power p
whole power m is identity means g power m whole power p is
identity. So now can we say, that order of g power m is p, can we
say this?

See not quite, right, because what 1s order of g power m? This is
this least positive integer such that g power m power p is identity.
We have certainly g power d, least positive integer, d such that g
power m power d is identity. We know that g power m power p is
identity, but what if there is a smaller number, we can certainly
say 1s that order of g power m divides, okay so this is also an
exercise this is sort of converse to this exercise that I wrote in the
box here.

That also we have repeatedly discussed, if you have an element of
order 1s 3 only we have that a power will be equal to identity if
you take multiples of 3. Right, so recall if order of g is a and g
power n 1s identity, then a divides n, using this we conclude that
order of g power m divides p, because g power m power p 1S
identity, so order of g power m must divide p. Right, this is
discussed in various previous videos.



So, now hopefully you remember, otherwise go back and see some
of the videos that talk about this. But now p is a prime number so
we are going to use this fact now, and I think this is the first time
we using that p is a prime number right.
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So p is a prime number, so actually it 1s not first time, we have
also used it here. To say that if p does not divide order of H if p is
does not divide order of H, it divides order of G mod H, here also
we used. So p is a prime number so only numbers that divide p are
1 and p, so order of g power m is 1 or order of g power m is p.
Right, I have observed here that order of g¢ power m divides p, but
p 1s a prime number so order of g power m is 1 or order of g
power m 1s p.

Because only numbers that divide P are 1 and P. But order of g
power g 1s 1 means what? g power m is identity, an element has
order 1 if and only if it is identity, but if g power m is identity that
means, if g power m is identity, apply Lagrange’s theorem, so now
I will do, so g power m is identity let us say. So I want to say that
this 1s not possible, why? The reason is this is not possible because
g power m 1s identity right, suppose g power m is identity, this
implies order of g okay, so if order of g power m which we know
either 1 or P if the order of g power m is 1 then g power m is E if
which I clam 1s not possible.

So why 1s that? If g power m is E then certainly gH power m is
g’ m H which EH which is H so g power H, g H power m is H, but



recall how did we pickup gH, order of gH is P, that is the way we
constructed, we chose, because by induction hypothesis applied to
G/H it contains an element of order P so gH was that element, so
gH power m = identity and order of gH = P that means P divides
m by the same exercise as before if order of g is A and g power N
is E then a divides N.

But P divides m, this is not a good thing right, because then P
divides what is m, m was order of H, so we simply called the m
the order of H, somewhere I wrote that right, we let m be the
order of H but we are assuming the P does not divide order of H,
because if P divides order of H we would not even do all this, if P
divides order of H we are done right away, so does not divide
order of H 1s our assumption and now we are getting the P divides
order of H so g power m cannot be equal to E, so this is not
possible. So order of g power m is P and we are done because
remember we want to exhibit is the element we are looking for, g
power m is the element we are looking for.

We want to exhibit, this completes the theorem proof of the
theorem, we want to exhibit an element of order P. Just to recap,
so this is, you have to carefully follow the proof that I gave, I am
going to spend 2 minutes recalling the proof how we did this.

The Cauchy’s theorem says that if G is a finite abelian group and
P 1s a prime number that divides the order of G then G has an
element of order P. The first which is easy is that G has no non-
trivial proper subgroups, then we conclude immediately the G is
cyclic. And by this exercise which I will do later we are done.



So the interesting case 1s, there is a subgroup of H of G which is
non-trivial and proper. Then using abelianness of G, we have that
H 1s normal which we use later. So we know that order of H is
greater than 1 and less than order of G and we use induction, if p
divides order of H, so by the counting formula, p must divide
either order of H or order of G mod H.

Because P divides order of G and P is a prime number. If P divides
order of H immediately by induction H contains and order P
element so G also contains an order P element, the same element.
Otherwise G mod H contains an order P element. Let us call that
gH, then we played with that element and concluded that an
clement that 1s related to it is the element we are looking for.

Okay, so the last part of the proof is somewhat tricky perhaps, so
you have to carefully read the proof and listen to my proof once
more if needed to make sure that you understand, okay, so this
complete the proof of Cauchy’s theorem.

Online Editing and Post Production
Karthick
Ravichandaran
Mohanarangan
Sribalaji

Komathi



Vignesh
Mahesh kumar
Web Studio Team
Anitha
Bharathi
Catherine
Clifford
Deepthi
Dhivya
Divya
Gayathri
Gokulsekar
Halid
Hemavathy
Jagadeeshwaran
Jayanthi
Kamala

Lakshimipriya



Libin
Madhu
Maria Neeta
Mohana
Mohana Sundari
Muralikrishnan
Nivetha
Parkavi
Poonkuzhale
Poornika
Premkumar
Ragavi
Raja
Renuka
Saravanan
Sathya
Shirley

Sorna



Subash
Suriyaprakash
Vinothini
Executive Producer
Kannan Krishnamurty
NPTEL Co-ordinates
Prof. Andrew Thangaraj
Prof. Prathap Haridoss
IIT Madras Production
Funded by
Department of Higher Education
Ministry of Human Resource Development
Government of India

HYPERLINK "http://www.mptel.ac.in"www.mptel.ac.in

Copyrights Reserved



