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In the previous video we looked at the first isomorphism theorem
and some examples of it, so I am going to before continuing today,
I will recall for you what is the first isomorphism theorem.

(Refer Slide Time: 00:32)

First isomorphism theorem, it says that, let phi from G to G prime
be  a  group  homomorphism,  in  this  case,  then  we  have  an
isomorphism from G mod kernel phi to image of phi. So this is the
statement of first isomorphism there, it tells that if you go modulo
the kernel, you get a group that is isomorphic to the image group,
remember kernel is always normal subgroup, so G mod kernel phi
has a group structure, it is isomorphic to the image of the group,
image of the homomorphism. 

So image of phi is a subgroup of G prime okay, and we saw one
example on this, we saw that if G is a cyclic group of order N, G is
a  cyclic  group  containing  N  elements,  then  we  saw  that  G  is
isomorphic it to Z mod NZ, so any cyclic group of the form Z mod
NZ,  and  this  was  an  immediate  corollary  of  first  isomorphism
theorem, because we look at the homomorphism from the integers
to the group G sending 1 to the generator of the group G, so then



kernel will be precisely NZ, it is an onto map, so there will be
isomorphism like this. 

Let us look at another example of first isomorphism theorem, so
recall  that   C* is  the group of  nonzero complex numbers  with
multiplication, these form a group under multiplication, and let’s
denote R+ to be positive real numbers also with the multiplication.

So  we  saw  in  previous  videos,  these  are  groups  under
multiplication. Consider the map, consider the function, let’s say
phi  from  C  star  to  R+  which  sends  a  complex  number  to  its
absolute  value.  So  if  you  recall,  absolute  value  is  simply  this
function, A+IB is a complex number, so A and B are real numbers,
I is a √ -1, you send it to A2  + B2, that is this function, absolute
value  of  A+IB  is  A2+B2  ,  so  in  order  to  see  what  the  first
isomorphism theorem has  to  say  about  this,  let  us  look  at  the
kernel of this map, so what is kernel phi? By definition complex
numbers with absolute value 1 okay, 

So if you represent complex numbers in the plane, so this the R
real axis, this is the imaginary axis right, so this is the kernel phi,
it  is  simply  the unit  circle,  it  denoted by S1,  this  is  the set  of
elements, complex numbers, which have absolute value 1, the unit
circle around the origin, that is the kernel phi. What is the image
of phi? So image, remember phi is a function from C star to R+
positive real numbers, if R is a positive real number, then absolute
value of R is simply R, so phi is actually onto, in other words, the
image of phi is all of R+. 

So  what  does  the  first  isomorphism,  now  say?  The  first
isomorphism theorem gives C* mod S1 is isomorphic to R+ okay,
so the first isomorphism says C*/S1 is isomorphic to R+ okay, you
should spend some time to think about this example, and this will
hopefully help you with understanding quotient groups, so this as
groups, C*/S1 is the  set of left cosets right, what are left cosets? 

These are left cosets of S1 is C*, these are the form {Z S1, Z € C *
}.  That  is  simply  the  set,  right,  and  on  this  there  is  a  group



structure, remember of course that C star is an abelian group, if
every subgroup is normal and in any case S1 is a kernel of a group
homomorphism, normal, so think of this, the groups C*/S1, as it is
the left cosets of S1, but think of them as circles of varying radii
okay, so you have radius 1 circle. 

That is S1, radius 2 circle, radius 3 circle, radius 1.3 circle, so and
if you think about this, if you take all such circles radius will be a
positive real number, you take all circles of positive radius, the
cosets can be represented by those positive reals and hence we
have an isomorphism like this, because if you have all cosets, they
are represented by simply the radius, cosets are simply circles of
different radius, so they are represented by positive real numbers,
so  that  is  a  slightly  intuitive  explanation  of  this  isomorphism,
okay. 

One more example let us do, this is something that you have seen
before.

(Refer Slide time: 07:42)

Remember GLn (R) is the group of invertible n by n real matrices.
Consider  the  map  from  GLn  (R)  to  R*,  nonzero  reals,  the
determinant map. So a matrix A goes to determinant of (A), since
A is invertible, determinant of A is nonzero, it is a real number, so
it is in R * it is a certainly group homomorphism, that we have
remarked earlier. det is clearly onto also, because if you take any
real number, nonzero real number, you can construct a matrix with
that  determinant,  for  an  example  you  can  just  take  a  diagonal
matrices  with that  number  being one of  the entries  and all  the
diagonal entries being 1.

(Refer Slide Time: 09:25)

So this is easily seen to be onto. What is the kernel of det? This is
the group of matrices in GLn (R) which have determinant 1, we



called this SLn (R), in an earlier video. So the first isomorphism
theorem gives GLn (R) /SLn(R) os isomorphic to R star,  okay, so
this is also a consequence of first isomorphism theorem. 

So  in  general  if  you want  to  prove  statements  about  quotients
groups,  or  solve  problems  involving  quotient  group  and
isomorphisms involving quotient groups, immediately you should
think  of  first  isomorphism  theorem,  and  the  other  two
isomorphism theorems I will do later in this video. One remark I
will make before I continue with second isomorphism theorem.

(Refer Slide Time: 09:48)

Let us say that G to G prime is a group homomorphism. Then
G/kernel  of  phi  is  isomorphic  to  a  subgroup,  this  is  exactly
statement  of,  this  is  an  immediate  consequence  of  the  first
isomorphism theorem, because first isomorphism theorem says G/
kernel phi is isomorphic to the image of phi, which is certainly a
subgroup of G prime, so G/kernel phi is isomorphic to a subgroup
of G1 and hence G/kernel phi can be identified with a subgroup of
G1.

 

So it is for all practical purposes, we will take it as subgroup of G1

so  we  usually  think  of  G/kernel  phi  as  a  subgroup  of  G1,  so
sometimes is useful to think of G mod kernel of phi as a subgroup
of G prime. In particular if kernel phi ={e}, which is to say phi is
1-1, then G can be thought of as a subgroup of G1, if G to G 1 is (1-
1) group of isomorphism that mean it is injective, G naturally can
be thought of as a subgroup, because its image is isomorphic to G,
by the first  isomorphism theorem.  We can replace by G by its
image and think of G itself as a subgroup of G1 okay. 

Now that we have looked various examples and a remark about
first isomorphism theorem, let us go ahead and do the remaining



two isomorphism theorems. So the second isomorphism theorem
says the following.

(Refer Slide Time: 12:18)

Let G be a group, okay, I am going to consider two subgroups of
G, okay let H and N be two subgroups of G,  assume that N is
normal in G okay, I am not assuming anything about H, other than
that it is a subgroup but I am assuming that N is actually a normal
subgroup of G, then the second isomorphism theorem says that H
intersection N, so it says several things, let me may be I should
write the separate statements.

Then H intersection N is a normal subgroup of H, the product set
HN is a subgroup of G and N is a normal subgroup of HN, and
finally  in  (3)  we  have  H  modulo  H  intersection  N,  by  (1)  H
intersection N is a normal subgroup of H, so this is a group by (2)
N is a normal subgroup of HN, so I can consider this okay, So H
mod H intersection N is same as HN mod N. 

Whenever you see in books statements about second isomorphism
theorem, this is what we usually refer to as second isomorphism
theorem, the statements (1) and (2) I wrote here are the simply
needed to makes sense of the third statements right, because H
intersection N needs to be normal subgroup of H, to talk about the
left hand side group, similarly HN needs to be group, and N needs
to be a normal subgroup of HN, in order to makes an sense of
right hand side as a group, so this is again group isomorphism.

I  have  been  using  this  symbol  to  always  denote  group
isomorphism, okay. Let us prove this quickly, it is not difficult at
all. Okay statement (1) we know that H intersection N, so what is
the meaning, so certainly H intersection N is contained in H, it is a
subgroup  obviously,  because  H  intersection  N  being  an



intersections  of  groups  it  is  a  subgroup this  is  a  very  exercise
because identity is in H and it is in N, so it is in H intersection and
N,  if  the  two thing  are  in  intersections  their  both  in  H so  the
product in H they are both in N, so their product is in N. So their
product is also in the intersection, so this is a very exercise. 

In order to check that it is a normal subgroup what do we have to
check? So let us choose h in capital H and n in H intersections N
okay, so this we need to check that we need to check that h n h
inverse is in H intersection N right, because this is the definition
of the normal subgroup. 

So recall we say that H is normal in G, definition, if g is in G h is
in H then g h g  inverse is in H. So you take something from the
bigger group and something from the smaller group and consider
this  element,  it  must  be  in  the  smaller  group.  Here  we  are
interested in proving that H intersection N is normal in H so we
want to take something from H something from the smaller group
and consider this element and show that it is in the smaller group
okay. First of all note that h n h inverse is in N. 

Because h is in G and n is in N and N is normal in G, right . So
this is because N is normal in G, that is hypothesis so we are given
that N is a normal subgroup of G so you take something in H and
it obviously in G because H is a subgroup of G, so small h is in the
group G, small n is in group N and the element h n h inverse  will
be in N. On the other hand, h n h inverse is also in H, because h is
in H, n is in H intersection N which is contained in H, so h is in H,
n is in H and H is a subgroup. Note that because H is a subgroup
and small h is in it and small n is in it, small h, small n small h
inverse will be in H, so these two thing together imply that h n h
inverse is in H intersection N.  So as we needed so (1) is proved
because H intersection N is a normal subgroup of capital H.

(Refer Slide Time: 19:01)
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Let us prove (2). (2) remember says two things, two statement are
made in (2), it says that, it say that, first of all it says that capital H
times capital N is a subgroup of G and that capital N is a normal
subgroup of capital HN.

(Refer Slide Time: 19:24)

So first  of  all  what  is  capital  HN? This I  defined in an earlier
video,  HN and  in  general  for  any  two  subsets  of  a  group  the
product is simply this set, you take elements from the first set and
elements from the second set and multiply in that order, so you
take  small  h  from  capital  H  small  n  from  capital  N  and  you
multiply them and you vary small h and small n okay so why is
this, so this is certainly a subset of G. 

So why is this a subgroup of G? So it is important to note here that
if you take two subsets their product is certainly not in general a
subgroup. In fact even you if take two subgroups their product is
in general not a subgroup. However if one of them happens to be
normal it is a subgroup okay let us check one by one the required
properties.  E  belong  to  H and  E  belong  to  N certainly  that  is
because both of them are subgroups. 



So E times E which is in HN, remember in order to be subgroup
capital HN must contain the identity element, it must be closed
under multiplication, it must be closed under taking inverses. We
have checked that it closed it contains the identity. Let us take now
two elements of the set HN, so H1 N1, H2 N2 let say these are
two elements are HN, we want to prove H1 N1 times H2 N2 is in
capital HN again. 

But here we have to use normality of capital N, so note that N is
normal G, this implies (H2 inverse N1 H2) is in N because H2 is
an element of the group G and N1 is in capital N, so this element
is in capital N, so this elements is in capital N, so say (H2 inverse
N1 H 2) is equal to some N3, it is equal to some element of capital
N, call it  N3. This gives me (N1 H2) is (H2 N3). I am simply
multiplying by H2 to the left on both sides. Now what is (H1 N1
H2 N2)? This is equal to, because I do not, remember because of
associativity I do not to be careful about putting brackets. N1 H2
is equal to H2 N3, by that calculations so this is H2 N3 N2. This
can be written as (H1H2 N3 N2), now H1 H2 are in capital H so
this is in capital H product is also in capital H similarly this is in
capital N, so this is in HN. So we have said that two things in
capital HN means their product is also in HN. 

Finally, how do you show inverses? It  is  the same idea, if you
have HN in capital HN, what is HN inverse? This is N inverse H
inverse okay, by what we have shown here we have shown that
(N1 H2) is (H2 N3), so here what we have really shown is that
anything in N times anything in H is you can switch the two you
can replace you can bring the H2 to the front but on the right now
there will be some element of N, so this by the same calculation as



above equal to H inverse times some N1, by the same calculation
as above, okay and this is in capital HN. So the point that I want to
highlight here and this the point that we used above. 

If N is in normal in capital G then for g in G, gN is equal to Ng.
See  elements  of  N  do  not  necessarily  commute  with  a  fixed
element but as a coset they commute, this is something that we
have seen before also but this is  exactly the calculation that we
have done here. So something in N times G, G times something
else in N so this is the point that I would like you to remember. So
this  is  what  we have  used,  so  HN is  a  subgroup of  G so  this
certainly proves the a part of the second statement of the theorem
and also N is E times N is contained in HN right. 

Because HN is product of elements of capital H and elements of
capital  N,  E in  an  element  of  H,  so  you have  this.  So N is  a
subgroup okay. To finish the proof of statement 2 of the theorem
we want to show that N is actually normal in capital HN but that is
obvious because N is certainly normal in HN, because N is normal
in even a bigger group, namely G. See what is the picture now we
have N sitting inside HN sitting inside G. N is normal in capital G
that  means  you take  something  in  capital  G take  something  in
capital N and do that operation GN G inverse, it is in capital N for
G in G and N in N, this is certainly going to hold if  you take
something in capital HN and do this same operation so because
HN is already a subgroup of capital G, so if you take something in
capital HN it is in G. 

So this condition holds, so if you have a subgroup which is normal
in  the  ambient  group  G  then  it  will  be  normal  in  any  other



subgroup  that  contains  it,  so  this  proves  (2),  right.  (2)  is
completely  proved  because  (2)  is  the  statement  that  HN  is  a
subgroup of G which we have showed and we also showed that N
is a normal subgroup of HN.

So now let us finally prove the main part of the theorem, which is
the isomorphism part of the isomorphism theorem.  Now we want
to  show  that,  here  we  will  show,  so  just  to  recall  H  mod  H
intersection N is isomorphic to HN mod N, this is what we want to
show. So let consider in order to this, let us consider the map from
H to HN mod N, let us call this phi. What is this map? phi of a
small h is by definition hN, okay so this is the map. So I want to
first of all understand what this really means, remember that, so if
you take, what is HN? 

So note what is HN mod N? What is HN mod N? These are all
elements all  cosets, note HN mod N are the left cosets of N in
capital HN, so these are elements of the form AN where A is in
capital HN, so in general this is the quotient, quotient group, AN
where A is in HN, but capital H is contained in HN because of the,
I  mean  this  is  similar  to  in  previous  part  when  I  said  N  is
contained  in  HN.  H  Is  contained  in  HN  because  identity  is
contained in N.

So we can talk of HN, so hN belongs to HN mod N, if h belongs
to H, so this is the explanation for this, I am sending h to hN and
keeping in mind that small h is also an element of capital HN. So
we  want  to  claim  that  phi  is  onto  and  kernel  of  phi  is  H
intersection N. Once we prove the claim the theorem will follow



immediately from the first isomorphism theorem, so what is the
proof of the claim? So why is phi onto? In order to prove phi is
onto we want to show that anything in the right hand side is an
image of something. 

So let AN be element of HN mod N, so A is inside HN, right so A
is an element of HN right, it a left coset of capital N in capital HN,
so A is an element of HN. So write A as small h times small n,
where of course small h is in capital H small n is in capital N. 

Now let us look at what is AN, AN is HN N. So this can be written
as HNN but what is NN because N is in capital N, NN is just HN
so AN is equal to small h times capital N, but this remember is phi
H. So we started in arbitrary element of, started with an arbitrary
element  of  HN  mod  N  and  showed  that  it  is  the  image  of
something in capital H, so this implies phi is onto right, so phi is
onto, this much is okay. 

What is the kernel of phi? kernel of phi is all elements of group H
such that  HN phi  so the definition is  phi  of  H must  be in  the
identity element. What is the identity element of HN mod N, HN
mod N is the quotient group, identity element is simply E times N,
so this is the kernel, but this is equal to all elements small h such
that hN equals N, EN is equal to N, so I am going to write it as
things that map to N are the elements in the kernel. But what does
hN equal to N mean? So if hN equal to N, I claim this is true if
and only if h is in N, right, this we have seen when we discussed
cosets,   hN is equal to N if  and only if h is in N, certainly so
because if h is in N then hN and N have something in  common.
So they must be identical, any two cosets are either identical or are



disjoint, so if  h is in N, h is N as well as h is in HN because h is h
times identity, so they are identical cosets. On the other hand, if
hN is equal to N, then  certainly h will be in N because h is in HN,
okay so this implies kernel phi, so these are elements I am going
to write it simply here, h in H such that h is in N. But what is this
set, this set is nothing but things that are in H well as in N, so
kernel of phi is simply H intersection N, so the claim is proved.

The claim, claim that phi is onto the kernel phi is H intersection N.
Now the first isomorphism theorem says, so the phi is a map from
H to HN mod N, phi is onto, kernel phi is H intersection N. So by
the first isomorphism theorem, first isomorphism theorem applies
to the any group of homomorphism, it says that G mod kernel is
isomorphism to image, so in this case image is all of this HN mod
HN, and kernel is H mod H intersection N. So H quotiented by H
intersection  N  is  isomorphic  to  H  mod  the  kernel  which  is  H
intersection N is isomorphic to image which is all of HN and mod
N. Remember this is the theorem that we wanted to prove. The
second isomorphism says H mod H intersection N is isomorphic
to HN mod N and we have completed the proof of the theorem
okay. 

This is  the,  this  finishes the proof,  okay, let  me stop the video
here, in this video we have looked at some more examples of the
first  isomorphism theorem and  we  have  stated  and  proved  the
second isomorphism theorem. In the next video I will do the third
isomorphism theorem, thank you.
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