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So now that we have learned quotient groups my next topic is to 
do what  are called isomorphism theorems. These are all very 
important theorems that tell you how to understand groups are 
isomorphic and if groups are isomorphic then what implications 
do they have, and all this use the notion of quotient groups.
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So the next goal is to study the isomorphism theorems for groups. 
So there are three such theorems, in this video I will do the first 
isomorphism theorem, and I will illustrate it with one example, 
and in future videos we’ll do the other two isomorphism theorems.

So first isomorphism theorem says the following. So there are 
three such isomorphism theorems, we will do the first today, first 
isomorphism theorem is the following. Let phi from G from G1 be 
a group homomorphism, the first isomorphism says that in this 
situation we have the following: then we have a group 
isomorphism from G/ker phi to image of phi. So that’s what first 
isomorphism says, it’s a good time to recall what is an 
isomorphism. 

An isomorphism is any group homomorphism which is a bijective 
set map, so isomorphism allows you to think of these two groups 
as essentially the same groups, if you have a group 



homomorphism kernel in this in order to even make sense 
remember  I am saying this is a group isomorphism, so these two 
are groups in particular, image phi is a group, that we know 
because it is subgroup of G prime,  but G mod kernel phi also a 
group because in general the quotient is only defined when you 
have a normal subgroup, but remember kernel phi a normal 
subgroup of, it is a normal subgroup. Hence we can talk about G  

mod kernel phi as a group, so G mod kernel phi is isomorphic to 
image phi.  

This should remind you a problem that we solved in an earlier 
video where we have shown that, order of G is equal to product of 
order of kernel phi and the order of image phi, that is just a purely 
set-theoretic statement, number of elements of (G) and that 
required you to deal with a finite group, right because the number 
of elements of (G) needs to finite for that statement, is the number 
of  elements of kernel phi times the number of elements in the 
image phi. But this is a very general result, this has nothing to do 
with finite groups and here we are only talking about 
isomorphisms, and in particular that problem follows from this if 
you think about it because this two are isomorphic groups means 
the orders are same, and the order of (G1 ) kernel phi is order of 
(G) divided by the order of kernel phi.
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 So the proof of this theorem, let me give, it is very simple, it is 
essentially the problem that we solved, in the problem we have 
constructed a bijection, now we simply show that bijection is 
actually a group homomorphism, consider the function, I think I 
called the group homomorphism phi, so let’s called function (F) I 
think this what we have done in that problem also, and the 
function is the same, what is the function? You take in element of 
this which is of the form of (a ker phi), so I think is probably 
better if I use letter like before so I am going re-write this as G/N  



to H1 and what is this? This sends (aN) to phi(a), from a problem 
earlier we know that f is bijective, in that problem we exactly 
shown it is bijective .

It is certainly onto and if two cosets map to the same element that 
means those cosets are same. So we only need now to show that 
(F) is a homomorphism, because a bijective homomorphism is an 
isomorphism, so we only need to show that (F) is a 
homomorphism. What does this mean? Now in other words we 
have show that f(aNbN) is want to check f(aN) f(bN), you want to 
check this, so let us check both sides, what is f (aNbN) this is 
same as f(abN) because that’s the product in the quotient group 
(aN) (bN) is (abN) and what is this? f(aN) is phi (a) and f (bN) is 
phi (b) right, and what is f(abN) you take any coset and map you 
take the element here and map it to phi of that element, so it is f 
(abN) will be phi of (ab). Now is this true? phi (a) phi (b) is phi 
(ab)? Of course it is true, this is true because phi is a 
homomorphism, so we have and hence (f) is a homomorphism. So
we have checked it (f) is a homomorphism. So the proof is done. 
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So f is a bijective, bijective comes from before, that we have 
checked before and we checked today that it is a homomorphism, 
it is a bijective homomorphism so (f) is an isomorphism that’s it, 
so (f) is isomorphism and hence we have G/kernel phi, this is my 
notation this symbol here arrow with symbol here , to indicate that
we have an isomorphism, that’s the proof of the theorem, first 
isomorphism theorem is proved. So its says that if you have any 
group of homomorphism, there is an isomorphism between the 
quotient group G mod kernel phi and the image group.

So why is this useful? So as I said first isomorphism theorem and 
more generally all isomorphism theorems are very useful in 
determining properties you know  observing new facts about 



groups. So let us explore this in one example, so I am going to 
recall for you, what we have done in a previous video. We recall 
that if nZ is a subgroup of Z, actually what we should write is for 
any n in Z, the quotient group Z/n Z is cyclic. This I did in one of 
the pervious videos, where we talked about quotient groups, we 
explicitly calculated quotient groups for subgroups of Z, so in 
particular Z/nZ we concluded was cyclic, I left the last part for 
you to check an as exercise. 

Now we will now show a sort of converse for this, we will now 
show that any cyclic group is isomorphic Z/nZ for some n in Z, 
this is the very remarkable statement right, it is okay to say that 
Z/nZ is cyclic, that is just a statement about subgroups of integers 
and quotient groups, now we are saying that you take an arbitrary 
subgroup cyclic group, this cyclic group can be anything, nothing 
to do with Z to begin with, however it is isomorphic to Z/nZ for a 
suitable integer.

(Refer Slide Time: 9:54)

So let me prove this theorem: if G is a cyclic group, then there 
exists an integer N such that, this symbol here, my notation I 
should remind you, we write G with this symbol to mean G is 
isomorphic to (G prime), that’s my notation, so I am saying that 
any cyclic group is isomorphic to this. 

So this is very, it is to be thought of as a structural theorem for 
cyclic groups, any cyclic group is of this form, if you understand 
this group then you understand all cyclic groups right, that’s the 
meaning, so what is the proof? Proof is an immediate application 
of the first isomorphism theorem, so let’s proceed this way. 

Let (a) be a generator of G, remember G is cyclic group, that 
means it is generated by a single element right, so G is so this is 
what it means, powers of (a) cover all of G, this what it means 
because such a thing exists because G is cyclic, we are assuming 



that G is cyclic group, so there is an element (a) such that its 
powers span or cover all of G, so you have (a) power N equals, the
set (a) power N, as N various over integers is equal to G.

Now consider the function phi from Z to G, what is this function? 
It takes N to a power N, this is a function that we have studied in 
the past, in a previous video, so we have earlier that phi is a 
homomorphism.
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A quick recall, remember we are defining phi (N) is (a) power (N) 
we want phi of (N + M) this is by definition (a) power N+M, this 
is same  as aN aM that is, if you write (a) product with (a) itself N 
times and M times you pool them and  you get N+M times and 
that is phi (N) phi(M), this is not difficult at all right, so phi is a 
group homomorphism. 

So not only that so phi is a group homomorphism, so phi from Z 
to G is a group homomorphism, and this is the first point, and of 
course phi is onto. See this is the meaning of, this is because G is 
cyclic, G is generated by,  the point is phi maps an element in 
integer N to (a) power N, in general the set of elements (a) power 
N as N varies is not all of G, that happens only if G is generated 
by (a), so G is generated by (a), so phi is onto, because every 
element of G is form of (a) power N. Now what is kernel? Is that 
clear, phi is onto because G is generated by a, every element of G 
is a power an integer, so phi is onto. Kernel phi whatever it is, is a 
subgroup Z, right in general kernel is always subgroup of the 
group, domain group, so suppose and what are the subgroups of 
Z? We know that subgroups of Z are, they are the form, I should 
use some new letter may be but hopefully it’s not confusing to use 
N again, though we have used N to denote the arbitrary integer 
right, there are of the form NZ. So suppose now coming back to 
specific kernel phi, kernel phi is NZ, so let’s summarize what we 
have.
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So we have a homomorphism, group homomorphism phi from Z 
to G such that phi is onto and kernel phi is NZ. Now let’s think 
about what first isomorphism theorem says, what does first 
isomorphism say, what does it say? First isomorphism theorem 
says, it says, so let’s see what it is, first isomorphism theorem said 
if phi is a group homomorphism from G to G1 then we have an 
isomorphism from G mod kernel to image phi. 

So we have done now, just apply that to our, so we have Z mod 
kernel is isomorphic to image phi, but this kernel is NZ, so Z/NZ 
its isomorphic to, because phi is onto, image phi is all of that, so 
phi is onto means, image phi is G. So Z/NZ is equal to isomorphic
to G, which is exactly the theorem that I wanted to prove. So we 
wanted to prove that any group, any cyclic group, if G is a cyclic 
group there exists an integer N such that  G is isomorphic to 
Z/NZ. We have shown that right, so this completes the proof of the
theorem. 

So first isomorphism theorem is a very simple statement really 
because its proof is clear, but it’s a very powerful result, it comes 
up all the time, it’s a very simple observation but it’s always 
repeatedly used in various situations and using it we have proved a
remarkable theorem that any cyclic groups is isomorphic to Z/NZ, 
why do I say it is remarkable? Because G is an arbitrary cyclic 
group, G could be anything, G is something that we do not know 
what it is, however we have identified with a very specific well-
known easily understood group Z/NZ. So this is to be thought as, 
the conclusion to be drawn from all this is the following. 

Using isomorphism theorems, we can essentially isolate the 
important properties of the group, cyclic groups, and think as them
as Z/NZ, there is nothing more.
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So let me give you one example to illustrate this. So let G be the 
group of 4th roots of unity, what are they? This is a group that we  
have seen before, this is (1,I) I being a square root of minus 1 
right, complex square root of minus (1) and minus (I). We have 
seen before that G is cyclic, and it is of order 4, so actually by the 
theorem G is isomorphic to Z/nZ, so Z/4Z. 

So I should have been more precise in my statement of the 
theorem, I wrote here G is a cyclic group then there exists the 
integer N such that G is isomorphic Z/NZ, but what is N actually? 
N cannot be arbitrary number, N has to be related to G, here N is 
the order of G right, so what we can conclude is why it is equal, 
what is the point here, so why is N equal to order of G, because if 
go you back and see, kernel will be NZ so, what I said is kernel is 
a subgroup of Z , so it is the NZ, but what is that N, it is the least 
positive integer such that (a) power N is identity, which is exactly 
the order, so N is the order of (a) which is, because (a) generate G 
order of (a) is cardinality of G, so in this case G is isomorphic to 
Z/4Z. 

So to be precise what we are doing is consider the map from Z to 
G we send any integer to  I power A, so the kernel of this is 
precisely 4Z, because kernel is the set of integers such as I power 
A is identity, in this case one, so I power 4 is one, I power 8 is one,
I power minus 4 is 1 and  so on. 

So the theorem really written in a more precise fashion is if G is a 
cyclic group of order N then G is isomorphic to Z/NZ. 

So let me stop the video here, we have seen a very important 
theorem here, called the first isomorphism theorem, and if you go 
back and see the statement and its proof, it’s not difficult at all, 
however it is always used, it is an important property of group 
isomorphisms that comes up a lot, so and we have seen one 
example of it where we have concluded that any cyclic group of 



order N is isomorphic to Z/NZ. So let me stop the video here, in 
the next videos we will study the second and third isomorphism 
theorems. Thank you.  

 


