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So, I am going to continue now my discussion about the 

equivalence classes and how this leads to the notion of a 

quotient group. So, recall from video on equivalence classes, an 

equivalence relation on a set is a relation  
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where you can say, if S is a set, we can say that two elements are 

equivalent and in order to be an equivalence relation it must 

satisfy that any element must be related to itself. If an element is 

related to A is related to B then B is related to A, if A is related 

to B, B is related to C then A is related to C. So, these are the 

properties of an equivalence relation. We discussed some 

examples of this and the most important example in our situation 

would be the relation defined by a sub-group of a group. 

So, that I will recall in a minute, but an equivalence relation, the 

main fact that I want you to recall from that video and that we 

will use today is an equivalence relation, an equivalence relation 

partitions. So, an equivalence relation on a set S partitions S. So, 

I discussed this in all those examples of equivalence relations 

but if S is given like this, you consider equivalence classes. 

What are equivalence classes?  

So, equivalence classes are simply, if you fix for A in S 



equivalence class is all elements in S which are equivalent to B, 

whether I write A is related to B or B is related to A is not 

important because of the reflexive property of or the symmetric 

property of the equivalence relation. So, these are the 

equivalence relations, classes. So, you have A1, A2 and A3 and 

so on. And the important property is either if you are given to 

equivalence classes, they are, given two equivalence classes, 

let’s say the class of A and the class of B, then we have two 

possibilities, then 1) either the class is equal to itself each other 

the class A is equal to the class B ([A]=[B]).  

So they are identical or 2) they are disjoint. They have nothing 

in common. So, this is a very strong condition, right? You have 

either disjoint sets or they are identical. So, if you take distinct 

classes, if A1 class is different from A2 they cannot have 

anything in common. So, you could cover the entire set like this. 

So, this is how a set partitions,  
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an equivalence class on a set partitions that set. So, the most 

important example for us and all the examples that we looked at 

are examples really of this example with different groups and 

different subgroups. Fix a group, so fix a group G and a 

subgroup H of G. Fix a group G and fix a sub-group H of G. So, 

we say that I think I defined if A and B are in G then A is related 

to B if A
−1

B is in H.  

Right, this is the equivalence relation that we checked, is an 

equivalence relation. So, what are the equivalence classes? And 

we discussed this, I think. Equivalence class of A is all B in G 

such that A −1 B is in H. But this is same as AH because if A −1 B 

is in H, A −1 B is equal to small h, so B is small a times H. So, B 



is related to A if and only if B is A times an element of H. So, 

this is just this set.  

This set remember is my notation, the definition is this, this is 

the definition. So the equivalence class of A is simply (aH). And 

the most important definition now I want to give you is the 

following. If H is a sub-group of a group G, the “left cosets of 

H” are subsets, so, left cosets are simply, you take an arbitrary 

element of the group and multiply by (aH). So, left cosets are 

these. 
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Similarly, you can define “right cosets” and not surprisingly, 

these are subsets obtained by multiplying by A on the right, Ha 

are right cosets. So left cosets are aH right cosets are Ha. So 

what we have done is for the equivalence relation of this 

example, for the equivalence relation above by which I mean the 

previous page, A is related to B if A −1 B is in H, for that 

equivalence relation, the equivalence classes are simply left 

cosets.  

Correct? So equivalence classes of this relation are the left 

cosets of H. So as I said, the left cosets and right cosets are very 

important for us and we will constantly keep dealing with them. 

So you should carefully think about what they are, and they are 

very simple really, the left cosets are subsets of the form aH and 

rights cosets are subsets of the form Ha and I will do some 

examples in a later video to describe these in specific groups, 

and hopefully that will become clearer to you then.  

 

So, now coming back to the equivalence relation that we are 

discussing for that equivalence relations the left cossets are the 



equivalence classes. So, now I want to do an important theorem, 

this is the first important theorem really of the course and in 

order to prove that let me observe the following. So, we have 

noticed two facts. We have noticed already one fact that, since 

equivalence classes partition the set, in our situation the left 

cosets of H in G partition G.  

So left cosets of H are equivalence classes for an equivalence 

relation. So, they partition H, which is to say, this means G is 

the disjoint union of left cosets. The word disjoint means that if 

you have two distinct left cosets, they disjoint. They have 

nothing in common. Remember this is automatically true for us 

because of the property of equivalence classes for an arbitrary 

equivalence relation on an arbitrary set, two equivalence classes 

are either equal or they are disjoint. So, in particular in our 

situation we are looking at a special equivalence class on a 

group and the equivalence classes are the left cosets so they 

partition the group. So, the group is the disjoint union of left 

cosets.  
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Now let me prove an important proposition. The number of 

elements, so fix let H and G, by which I mean G is an arbitrary 

group and H is a sub-group of G and let a be in G. Then the 

proposition says the number of elements, then the number of 

elements in the left coset aH is equal to order of H. Recall order 

of a group is simply the number of elements. So, order of a 

group is the number of elements of H.  

Remember I am not saying, order of aH because aH is not a 

group, aH is just a left coset. So, the number of elements of aH 

is equal to the number of elements of H, that is the proposition. 



And the proof is very simple. Consider the map from H to aH 

given by a small h goes to small a times h. This is a set map. 

Right, this is a map of sets. Remember aH is actually nothing 

but a set. It has no further structure; it is just a subset of the 

group G.  

It is a left coset, it is a subset of group G. So, this is a map of 

sets, give me an element h I will multiply by a and map into this. 

This of course belongs to aH. I claim that this is a bijective map. 

Why is this? First of all, is it onto? Yes, because what are the 

elements of aH? In previous slide I wrote that right, aH or ah as 

h varies. So, you give me an element of aH that is of the form a 

times h. So, h maps to that. Right, so it is certainly onto, by 

definition, everything in aH is a multiple of something in H.  

Is it 1-1? Let us prove this. Suppose h1 goes to a h1 and h2 goes 

to ah2. Let us suppose that they are equal, ah1 equals ah2. But 

then the cancellation property of groups that we have learned 

long time ago gives me h1 equals h2, by cancelling A. So, it is 

1-1 also, so it is a bijective map. If you have two sets which, 

there is a bijection between them that means they have the same 

number of elements.  

So, H and aH have the same number of elements. Right, because 

if there is a bijection that is by definition that means they have 

the same number of elements. Now let us look at, see one thing 

that I should mention here, that I should have been careful when 

I stated the proposition. I am going to assume that, though it is 

also true in general, G is a finite group, because this is useful 

only in this situation, G is a finite group.  

So, G is has only finitely many elements, in particular H has 

only finitely many elements because H is a sub-group of G. So, 

this proves the proposition right. The proposition is proved now.  
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Next we have two facts. So, let me draw a picture here. So, this 

is the group G. You have cosets, remember H itself is a coset 

because H is nothing but eH. So, that is one coset. You have 

some other coset a1H, some other coset and so you have several 

cosets and we have two facts: the first fact is that G is the 

disjoint union of left cosets. So, these cosets cover G. So, you 

have this coset union, this coset union this coset union, this coset 

and so on is all of G.  

And the previous proposition says that any two cosets have the 

same number of elements, because if you aH has the same 

number of elements as H, a1H has the same number of elements 

as H but so does a2H, a2H also has same number of elements as 

H. This proposition works with an arbitrary element a of G. So 

any two cosets have the same number of elements. So, now let 

us think about what could be the number of elements of G.  

So, we have, G is a disjoint union of H, union a1H, union a2H, 

anH, because G is a finite group, remember that G is a finite 

group. So, it has finite many cosets right because they are only 

finitely many elements. This is my symbol for disjoint union. 

So, it is a union a1H union a2H union anH. How many elements 

are over here? Remember n, let me denote this by a2 because 

this is taken to be a1, n is the number of left cosets of H in G, n 

because a1H, a2H, a3H, anH, it is a number of left cosets.  

So, n is the number of cosets that are distinct among all the coset 

of H in G. So, now because G is partitioned by these cosets, 

cardinality of G, number of elements of G, which is order of G 

is the number of elements of, let me use for simplicity, the same 

symbol within vertical bars, number of elements of G because G 

is a disjoint union of these things. Every element of G is in 



exactly one of them right. 

So, number of elements of G is number of elements of this, plus 

number of elements of a2H plus number of elements of a3H plus 

number of elements of a4H and so on. So, number of elements 

of G is equal to number of elements of e H, number of the 

elements of a2H, number of elements of a3H and finally number 

of elements of anH. But by the proposition of the previous slide, 

number of elements of a2H is also the number of elements of H, 

a3H is also anumber of elements of H, anH is also number of 

elements of H. 

It does not matter what cosets we are considering they are all H. 

How many factors here are there? There are n terms. Right, so 

cardinality of G is the cardinality of H added to itself n times. 

So, we have that cardinality of G is equal to n times cardinality 

of H, and this leads us to state our first important theorem.  
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Before that let me define the following number, the number of 

cosets, I am going to stick to left cosets for this calculation, and 

for this theorem, because everything that we have done is about 

left cosets. The number of left cosets of a group H in G is called 

the “index of H in G”. Index of H in G is the number of left 

cosets of H in G, it is denoted by this symbol, [G: H]. So, the 

previous slide we ended with this statement, cardinality of G is n 

times cardinality of H, where n is the number of left cosets.  

I have given this a name now. So, we have a “counting formula” 

so this is an important counting formula in group theory. We are 

going to encounter other counting formulas which are formulas 

to count elements of a group in various contexts. The first 

example of counting formula is this. Order of a group is the 



index of the sub-group in H times order of H. So, this is the 

counting formula.  

This is a very important formula that we have to use repeatedly 

in our future videos. So, please pay close attention to this and try 

to understand this carefully. I have already proved this. The 

previous work is a proof of this. Okay, if you are not clear you 

should go back and listen to this again and convince yourself 

that we have the counting formula, it says that cardinality of the 

group or the order of the group is the index of H times the order 

of H. Here H is a subgroup of G. Okay, so as an immediate 

corollary of this I am going to write a very important theorem, 

follows immediately. 
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It is called the Lagrange’s theorem. So, this is one of the first 

important theorems in group theory. Again I keep repeating this, 

at some point in these videos I have started assuming G is a 

finite group. So, you can talk about cosets and equivalence 

relations always without assuming that G is a finite group but 

once I started counting number of elements, I have assumed that 

G is a finite group.  

Everything that follows is about finite groups. For example the 

statement about counting formula is a statement for finite 

groups, right because if G is not a finite group there is no sense 

in the statement, because this is an infinite number and you 

cannot write something. So, if G is a finite group you can make 

this. So, similarly Lagrange’s theorem is a statement about finite 

group. So, I will record that here. 

Let G be a finite group and let H be a sub-group of G. Then the 

order of H divides the order of G. Okay, so written differently, 



|H| divides, because the symbol for the order is this, order of H 

divides |G|. This is as I said is a very very important theorem in 

group theory and it gives you a lot of flexibility in working with 

groups. And what is the proof? Immediately follows as I said 

from the counting formula because |G| is something times |H|.  

We actually know what this number is but it is immaterial for 

the Lagrange’s theorem. Right, this follows easily from the 

counting formula. Correct, because |G| is the product of |H| and 

something else. So, that means |H | divides |G|. So, I am going to 

work out some simple examples to illustrate this but pause for a 

minute here and then think carefully about what Lagrange’s 

theorem is saying.  

It says that if you have a finite group, it puts a major restriction 

on possible orders of subgroups. Immediately you can conclude 

that if, for example G is a group of 6, for example S3, it cannot 

have a subgroup of order 4. Right, because 4 does not divide 6. 

So that is what Lagrange’s theorem says. Okay, so this is our 

first application of the study of equivalence relations and left 

cosets. It gave us a  very important result about orders of a finite 

group and orders of its subgroups. 
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