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Okay so far we have studied various properties of groups, subgroups, normal 

subgroups, group homomorphisms, and isomorphisms of groups and so on. And 

we next want to study an important operation called quotients of  groups and in 

order to go that I want to talk about cosets of a subgroup in a group. Before that let 

me recall for you quickly the motion of equiavalence relation on a set which many 

of you may have seen before. 

But it is very important for the course, so let me quickly define it and check its 

important properties. Then we will apply to the case of a subgroup of a group. 
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So review of equivalence relations on a set. So let S be a set okay, for this video 

we are only going to look at some sets, there is no group here. So let S be a set and 

equivalence relation on S is a relation, okay, it is relation denoted by the symbol 

here, it is a relation of among elements of S. So we say that two things are related 

and we write this symbol A ~ B. This means that A is related to B, so A is related 

to B is denoted by this symbol A ~ B. 

So an equivalence relation is a relation on a set, which is to say a relation among 

elements of that set, so it is very precisely speaking, it is a subset of a S cross S. 

But I do not want get into this formal definition because it is confusing, if you have 

not see it before.  So it is simply a relation and when you see this you think of a 

way of saying that two things are related or it tells you given two elements, if they 

are related or they are not related. But the relation must satisfy the following 

conditions.  

A must be related to A for every element of S, okay an element must be related to 

itself. If A is related to B then B is related to A, okay. So this is true for every a,b 

in S. The third property is called transitive property, if A is related to B, B is 



related to C, then A is related to C, so this is true for all a, b, c in S, okay. An 

element must be related to itself, if an element is related to another that element 

must be related to A. If an the element related to B, B is related to C, okay. The 

most important example, a trivial example really,  is equality: take for example on 

Z okay, you say that a is related to a, if a = a. So equality is a basic example of an 

equivalence relation, every element it is equal to itself, if a=b, then b=a, if a=b, 

b=c, then a=c. So there is no surprise that equality is an equivalence relation. But 

there are more interesting equivalence relations and hence you actually do talk 

about equivalence relations because there are equivalence relations that are not 

equalities. So another example. 
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Take again the integers, but now you say that and you say that a is related to b if a-

b is divisible by 4. So this is my definition of a new equivalence relation so this is 

the definition. For example 5 is related to 5, of course. Because 5-5 is 0. So earlier 

equality was the only equivalence relation but now we have more, because 5 is also 

related to 1. And so 5 related to 5 because 4 divides 5-5 which is 0, 5 is related to 1 

because 4 devised 5-1 which is 4. 

Similarly 5 is related to 21, right, rather, yeah,  21 because 4 divides what is 5-21? 

That is -16 right and 4 divides -16, so 5 is related to 25, 5 is related to 29, 5 is 

related to 34, or 33 and so on. So 5 is related to 5, but it is also related to a lot of 

other integers. But 5 is not related to let me use this symbol to 26, so 5 is not 

related to because, what is 5-26? 4 does not divide 5-26 which is -21 so 5 does not 

divide, 4 does not divide it. So 5 is not related to 26 so this is a more interesting 

example of equivalence relation than equality. So because we are doing group 

theory, let me define another equivalence relation, 
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which is more appropriate for us and more important for us. So let G be a group 

and let H be a subgroup of G. So we have a group and subgroup of that group, so I 

define A is related to B, so let me start like this let a, b be two elements of G. We 

define A is related to B if let’s say, A inverse B is in H. So actually I forgot 

something here, before I continue with the third example, I just wrote something I 



never said that it is an equivalence relation. 

I should prove it right, so that I will not check, I will quickly say why it should be 

true. The equivalence relation in the second example is that A is related to B if 4 

divides a-b. So certainly, so why is this an equivalence relation. So certainly A is 

related to A that is okay because A-A is 0 and 4 divides it.  If a is related to b then 

b is related to a because if A is related to B 4 divides A-B but then 4 divides B-A 

also so B is related to A. 

If A divides B and B divides C that means 4 divides A-B and 4 divides B-C but if 4 

divides A-B, B-C, 4 divides their sum, which is A-C, so this implies 4 divide A-C, 

so A is related to C, so we have checked all the three properties. So this is an 

equivalence relation.  Now let us check that this is an equivalence relation, what 

are we saying, let H be subgroup of G, two things are equivalent if there if this 

element constructed from them is in the group H. 

This is an equivalence relation. Why? First of all, is A related to A? yes, because 

you have to ask yourself whether A inverse A is in H. It is in H because  that is just 

E, okay so that is okay. If A is related to B, that means A inverse B is in H right, by 

definition. But because H is a subgroup, A inverse B whole inverse is in H, 

anything in H contains its inverse, H contains its inverse also, so A  inverse B is in 

H means A inverse B whole inverse is in H, what is A inverse B whole inverse? 

That is, B inverse times A, right? We have seen this before, A inverse times B 

whole inverse is B inverse times A inverse inverse, but that is nothing but B 

inverse A. So if B inverse is in A, this is the meaning of B being related to A. 

Remember A is related to B if A inverse times B is in H. B inverse times A is in H 

means that B is related to A. So the second property holds.  

Now let’s take A related to B, B is related to C, that means A 
-1

B is in H and B 
-1 

C 

is in H, right? A 
-1 

B is in H, B
-1 

C is in H. This means because H is a subgroup it is 

closed under multiplication, so  if A 
-1 

B is in H, B
-1 

C is in H their product is an H, 

so A 
-1 

B times B
-1 

C is in H, but that means is A 
-1 

C 
 
is in  H because that is the 

product,  that means A is related to C.  

So this is an important equivalence relation on a, this is an equivalence relation and 

this is some thing we will explore in great detail later. So I looked at three 

equivalence relations on sets, so now some important properties of  equivalence 

relations.  Equivalence relations 
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give “equivalence classes” so what do I mean? Let us say S is an arbitrary set, I am 

going back to the setting of general setting of a set and an  equivalence relation on 

that set. So now for A in S, define the equivalence class of A, the equivalence class 

of A, as we denote by this symbol [A]. So let us see the equivalence class of A is 



denoted by A in square brackets, this is all elements in S such that A is related to B 

okay. This is very simple, the equivalence class of A is the collection of elements 

that are equal to B, so in our examples, what is equivalence in the first example, in 

the first example  where equality is the equivalence relation equivalence class is 

very simple. 

(Refer Slide Time: 14:06) 

 Right in the first example equivalence class A is equivalent to B if A = B in the 

case equivalence class is all elements which are equivalent to B, equivalent to A 

but this means, so this is B in Z such that B is equivalent to A, but this is same has 

B in Z, B=A. so this is just nothing but A, right in this case the equivalence class is 

just the set {A}. 
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In the second example we have defined A here S is Z, A is equivalent to B if 4 

divides A-B, okay. So I am going to first write down the equivalence class of a 

specific element, so that you see what is going on, so let us say, 5 that we have 

seen earlier, what is the equivalence class of 5. So these are all integers such that 5 

~ b, this is same as writing B ~ 5, this equivalence relation has that property right. 

So this is all integers such that they are equivalent to 5, so this all integers such that 

4 divides 5-B. 

So if you write these down what would they be? I am just list some of them, so 0 is 

not an element in this because 5-0 is 5, 4 does not divide it. So 1 is there, 5-1 is 

divisible by 4, so 1 is an element of equivalence class, the previous element would 

be -3, right? Because -3 is related to 5 because 5-(-3) is 5+3 = 8, it is divisible by 4, 

similarly next will be 5, 9, 13, 17, 21, 25, 29, you see the pattern here, right. These 

are all, the previous element will be -7. 

You can see that they all integers, starting with 1 they you keeping increasing by 4, 

keep decreasing by 4. We have used the notation 4Z remember 4Z, it was 4Z was 

all integers which are multiples of 4. So this is –8,-4, 0,4,8 and so on right. This is 

similar to that, it is not quite that, of course it is not that, but it looks like 0 is 

replaced by 1, 4 is replaced by 5, 8 is replaced by 9, -4 is replaced by -3, so I can 

write this as 4Z+1. 

So you take 4Z and add 1 to each element, so add 1 to each element, so this is 4 

Z+1 so the equivalence class of 5 is 4Z+1. We will come back to this and discuss 

this in more detail, but thing to keep in mind now is 4Z the equivalence class of 5 



the equivalence class of 5 is 4 Z+1. I will let you do this as an exercise. what is the 

equivalence class of 6? is 4Z+2, for 7 it will be 4Z+3, so what about for 8? You 

will see that it is exactly equal to 4Z. So and for 9 it will be 4Z+1 again, and 10 it 

will be 4Z+2, so they keep coming back right, it is periodic in that sense, so as I 

said, I am going to come back to this example and study it more detail later. 
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In the third example, the set was a group G, fix a  subgroup H and the relation was 

A is related to B if, so recall that in this example we have declared that A ~ B if A
-1 

B
  
is in H, right, that was the example. You saw that A

-1 
B in H then A is related to 

B that is an equivalence relation. What are the equivalence classes of? So now let 

A be in G, what is the equivalence class of this. So this is all elements B in G such 

that A is related to B, by  definition this the equivalence relation, equivalence class, 

right. 

But this is all B in G such that A inverse B is in H right, this means all B in G such 

that A inverse B is equal to some h, it is an element of capital H, so I am going to 

give it a name, small h, so this is same as all B in G such that B is Ah, where h is in 

H, right. So it is all elements in G which can be written as Ah some suitable small 

h in H, this is nothing but then I can eliminate B from this whole description, it is 

Ah, where h is in H, so is this clear all the equalities here. 

(Refer Slide Time: 21:26) 

 

Originally these are all elements B equivalent to A, that means A
-1 

B is in H, that 

means A
-1 

B is equal to some small h, which is equivalent to if A
-1 

B= h then b=ah. 

So I am going to rewrite this as b equals ah, but then I eliminate b from the 

description completely. So this all ah, where h belongs to H, there is another 

notation for this, so this is the definition, so define aH to be, this is very similar to 

the way that we defined subgroups of Z. So I take this subset obtained by 

multiplying every element of capital H by small a so the  equivalence class of A is 

in this case is just aH, so now I want to define a proposition,  
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which is, prove a proposition which is very important for us, let S be a set and let 

this be an equivalence relation on S.  Then the equivalence classes of elements of S 

partition S. So partition S, that is, S is a disjoint union of equivalence classes. 

Okay, what happens is, I will prove this in a minute, but what happens is that you 

start with a set S, you have a equivalence relation on this set, then if you take 

equivalence classes, they may coincide, but there will not be intersections for two 

distinct cosets, so these are all equivalence classes, okay, so they partition the set, 

so they partition the set meaning every element in the set is in one of the 

equivalence classes. And there is no common element between two distinct 

equivalence classes, so this is the proposition so let us prove this. 

(Refer Slide Time: 24:29) 

So first of all give if A belongs to S then A belongs to [A], right, this is because 

remember one of the first property, the first property of an equivalence relation is 

that an element is related to itself, so this equivalence class remember, equivalence 

class of an element is all elements in the set  such that B is related to A. So A is 

related to A, so A is in the equivalence class of A, so certainly S is a union of 

equivalence classes, correct, if you take all equivalence classes and you take their 

union you get S. Because every element of S is in an equivalence class, certainly 

equivalence classes are all subsets of S, so this is fine.  

Now on the other hand, I claim that if equivalence class of A and the equivalence 

class of another element of B are not disjoint, remember disjoint means they have 

no common elements. If there is not disjoint then they are equal, so what I am 

saying that if you take the equivalence class of A and equivalence class of B, if 

they have something in common they must be equal. 

So in fact they must be equal, so they can’t have something in common and be 

distinct. What is the proof of this, so let, remember these are not disjoint, meaning 

they have some common element, so let us say C is in the intersection of, see all of 

this is happening within S. So this and this are subsets of S and they have 

something in common, so C is in both of the equivalence classes. That means A is 

related to C and B is related to C right.  

Because C is in [A] , A is related to C, C is in [B], so B is related to C, this implies 

that, A is related to B, because A is related to C, C is related to B, so by the 3
rd

 

property of an equivalence relation, A is related to B, that means, A is in [B], right, 

so and B is in [A], so A is in the equivalence class of B, and B is in the equivalence 

class of A, so that means, because if any element, if some other element D is 

equivalent to A, then it is equivalent to B also, so it is in [B], if it is equivalent to A 



and B also, so this is fine. 

So this proves that, if two equivalence classes are not disjoint, then they are exactly 

identical, so this proves the claim. 
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Now it follows that, S is a disjoint union of equivalence classes, because, we have 

either two equivalence classes are disjoint, or they are identical, so because of what 

we have shown, if they have some elements in common, then they are identical, 

that is what we shown here, right, if [A] and [B] are not disjoint, they have 

something in common, they are identical, so if you take distinct, now take distinct, 

so not equal, equivalence classes, they are all mutually disjoint, because they are 

distinct, they are not equal. 

They are distinct, hence any two of them being distinct are disjoint, and their union 

is, because every element remember of S, is in an equivalence class, so take that 

equivalence class, and that is one of the equivalence classes, that we took earlier, 

so the distinct equivalence classes partition S, this proves the proposition, no need 

to say really distinct, because we need not repeatedly take it, right, so these are 

equivalence classes partition S is the statement, and I have proved it, and I will 

work this out, in the 1
st
 two examples, and leave the 3

rd
 example for the next video. 
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So in the 1
st
 example, remember where S was S and a ~ b, if a=b, what are the 

equivalence classes here, equivalence classes are just singleton sets a, equivalence 

classes of a is just {a}, so Z is a union of, so certainly it is a union of singleton sets. 

In example 2, S was again Z, and a ~b, if 4 divides a-b. Here there are exactly 4 

equivalence classes, so namely like the equivalence class of 0 which is 4Z, the 

equivalence class of 1 which is 4Z+1, equivalence class of 2 which is 4Z+2, 

equivalence class of 3 which is 4Z+3, okay. 

And if you go back and see the examples, the equivalence class of 5 was actually 

just 4Z+1, which is same as the equivalence class of 1, equivalence class of 6 is 

4Z+2, equivalence class of 7 which is 4Z+3, equivalence class of 8 which is 4Z, so 

you get nothing new, by considering other integers, so Z is the disjoint union of 

4Z, 4Z+1 disjoint union 4Z+2, 4Z+3, it is clear that any integer is in one of them. 

Because all you need to check is, divide by 4 and see what the remainder is, if the 

remainder is 0, it is here, if the remainder is 1, it is here, if the remainder is 2, it is 

here, if the remainder is 3, it is here, and they certainly have nothing in common, 



4Z+1 and 4Z+2, cannot have any element in common, so these are the different 

partitions for the equivalence class. I am going to stop the video here, we have still 

to discuss the equivalence classes of the relation, given by a subgroup of a group, 

that we will do in the next video, but to recall, what we have done in this video, we 

have talked about equivalence classes on arbitrary sets, we looked at some 

examples, and I proved a proposition saying that equivalence classes of an 

equivalence relation of a set, partition  that set, and which is very important for us 

in the context of group theory, because it will allow us to define cosets of a 

subgroup and talk about quotient groups later on. So I will stop the video here, and 

continue with cosets next video, thank you.  
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