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So let’s continue our study of group homomorphisms. Last video
we  defined  group  homomorphisms  and  looked  at  various
examples of group homomorphism. I am going to study further
now. I  am going  to  start  with  some  basic  properties  of  group
homomorphisms. 
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So  properties  of  group  homomorphisms,  okay, so  some  of  the
most important properties are the following. So maybe I will write
this as a definition, proposition rather. Proposition: Let φ from G
to G prime be a group homomorphism, it sends, in other words, φ
of AB is equal to φ of A times φ of B for all AB in G. Then we
have two statements φ of EG is EG prime, so just to clarify here E
always stands remember for our identity element in a  group.

But here I  have two groups G and G prime, so I  am going be
denoting  which  identity  I  am  talking  about  by  looking  at  the



subscript, E sub G is the identity element of G, E sub G prime is
the identity element of G prime, so what I am saying is that in a
group homomorphism, the identity element of the first group goes
to the identity elements of the second group, further we have if A
belongs to G, if A is an arbitrary element of G then φ of A inverse,
that means I first take the inverse of A and apply φ to it, I get the
same answer as  first  taking image of  A and taking the inverse
image, okay, so just ready this carefully, I first take inverse image,
sorry I first take the inverse then take φ or I first take the image
and then take the inverse image.
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I get the same answer so inverse and then φ is same as  first φ and
then  the  inverse,  so  these  are  the  properties  of  group
homomorphisms.  So  let  us  prove  this,  this  is  very  easy,  the
condition that φ of AB equals φ A times φ of B guarantees this,
that  is  a  powerful  condition that  guarantees  this.  Note  that  EG
times EG is EG, right, this is in G, this operation is taking place,
this is an equation in G, that is because anything commutes with
EG, so in particular anything when you multiply by EG you get it
back so in particular EG times EG is EG, so apply φ to both sides,
okay, now because φ is a group homomorphism, φ of EG times φ
of EG is φ of EG times φ of EG, φ of EG times EG is equal to φ of
EG, I am not changing the right hand side here, φ of EG is same
as, I am keeping it as φ of EG.

But  the  left  hand  side  becomes  this,  because  of  the  group
homomorphism property, okay, now let’s look at this, this is in G
prime this is an equation in G prime, we started with an equation
in G applied φ to it and translated completely to G prime so now
what  does this  mean? You have two elements,  so you have an



element  actually in G prime that you when multiply you get  it
back, so we trying to show that φ of EG is EG prime. 

But whatever it is, I can multiply by, both sides by, both sides of
this by, the inverse of φ of EG. What do I get? This is an element
of the group G prime, so we have two elements multiplying to this
element,  they  all  happen  to  be   same  element,  and  you  can
multiply by the inverse of this, so φ of EG inverse times φ of EG
times φ of EG is φ of EG inverse times φ of EG, correct? So that
is what we have when you multiply out you get this. 

But  then  what  is,  what  is  this,  because  again  the  group  is
associative we can combine these two and that will cancel because
that is inverse of this, so we get, φ of EG on the left hand side and
what is φ of EG inverses times φ of EG this is an element inverse
times itself. So this is nothing but EG prime, this is a property of
inverse in a group, φ of EG is some element, I am multiplying by
its inverse this is some element in G prime,  I am multiplying by
it’s inverse so I get EG prime so this proves the first property that I
said,  so  the  identity  element  of  group  G  maps  to  the  identity
element of the group G prime, right. Second property is similar
and easy, so let us say that we have we have already shown that so
we know that A time so let A, B in G then A times A inverse is EG
right, this is the definition of inverse so apply φ to both sides so φ
of A time A inverse is φ of EG by part one it is already shown to
be EG prime φ of EG is EG prime, now the group homomorphism
property says that φ of A times φ of A inverse is EG prime.
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So φ of A times φ of A inverse is EG prime, but remember inverse
is the unique element which has the property that φ of A times it is
EG  prime,  so  by  definition  of  inverse,  we  must  have  φ  of  A



inverse is φ of A inverse the whole inverse because φ of A when
you multiply with this element here you get the identity element
so this element must be the inverse of φ of A which is denoted by
φ A whole inverse. 

So this is, remember, the second property, φ of A inverse is φ of A
whole  inverse  so  this  proves  two,  so  the proof  is  complete,  in
other  words,  identity  must  go  to  identity  under  a  group
homomorphism and inverses must go to inverses, this is useful to
keep in  mind  because it  tells  you quickly  if  a  map is  a  group
homomorphism  or  not,  if  it  doesn’t  send  identity  element  to
identity element, it cannot be a group homomorphism.

So, if you recall, one of the examples I did in the previous video
was sending a function from Z to {1, -1}, φ of A is, let us say 1, if
A is odd, -1 if A is even, and I asked you to check that this is not a
group homomorphism. That was left as an exercise for you. Now
let’s do this exercise using the proposition that we proved today.
Remember  the  other  way if  you send even  numbers  to  1,  odd
numbers to -1, that was a group homomorphism. 

But if I interchange this it is not a group homomorphism. In fact,
what is the identity element of Z? This is my notation right, E is
always the identity element and I am denoting the group by the
subscript. Remember Z is a group under addition so the identity
element is 0. Right, and zero is even, so under this map, φ of 0 is
because, even numbers goes to -1, φ of 0 is -1, but what is, you
call this group G prime, what is EG prime?

Certainly 1, because this is a group under multiplication with 1 as
identity, so the zero element does not map to the identity element.
So, φ of EG is Z rather is not equal to EG prime. So, φ is not a
group homomorphism. We do not need to check anything more,
you simply send, you simply check that the identity element does



not  go  to  the  identity  element  it  cannot  be  a  group
homomorphism. Okay, so similarly inverses go to inverses. 

So however I want to make a point here, if the identity element
goes  to  the  identity  element  does  not  mean  that  it  is  a  group
homomorphism. The proposition does not say that if this condition
is satisfied if EG goes to EG prime, it is a group homomorphism.
It only says that if you have a group homomorphism,
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identity element goes to identity element. So, neither of these are
sufficient  conditions  for  homomorphism.  There  only  necessary
conditions. They must be true, but if they are true it does not mean
that it’s a group homomorphism. 

Okay, so now that  we have this,  let  me define some important
subgroups  associated  to,  important  subgroups  associated  to  a
group homomorphism. Okay, so there are two. 

So let me work now with an arbitrary group homomorphism. Let
us say φ from G to G prime is a group homomorphism. So we
define two subsets  first  and we will  check that  they are  group
homomorphisms, sorry we define two subsets first and check that
they are subgroups. So “kernel of φ”, okay this is the word, kernel
of φ and it is denoted simply by Ker (φ), is the following. So, you
define Ker (φ) to be all elements of the group such that φ of A is
the identity  element  of  G prime.  So this  is  all  elements  of  the
group such that φ of A is EG prime, exactly the subset of elements
which map to EG prime, so and similarly let me define this first.
Image of phi, so this is the subset of G remember. Kernel is a
subset of G. Image φ
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which I will denote by image phi is the following. Image phi is
equal to, simply the image of the function φ, so this is just a set-
theoretic notion, I am taking all elements of G prime, this is inside
G prime clearly. All  elements  of  G prime which appear  as  the
images of the elements of G under φ. So, the proposition now is
kernel φ is a subgroup of G, it is a subset of G by definition but in
fact it is a subgroup of G and image φ is a subgroup of G prime. 

This is true for any group homomorphism. So if you start with any
group homomorphism φ, kernel is a subgroup of G, image is a
subgroup of G prime. What is a proof? It is again fairly straight
forward, let me check 1. What is a subgroup? If you recall from a
previous video, subgroup is a subset of the group which is closed
under  multiplication,  which  has  inverses  and  which  has  the
identity element, Okay. 

So first of all is it closed under, kernel φ is closed under the binary
operation of G. So, let’s check this. Kernel φ is closed under the
binary operation of sorry G not G prime of G because if, A and B
are in kernel phi, this means φ of A and φ of B are both EG prime,
by definition.  Kernel  φ  consists  of  elements  which map to  the
identity of G prime, but then what is φ AB? This is by definition
sorry not by definition by the property of a group homomorphism,
is same as φ of A times φ of B which is EG prime times EG prime
which is EG prime. So that means AB is in, right, because AB
maps to EG prime so AB is in the kernel phi. We started with two
elements in the kernel and concluded that their product is in the
kernel.  Kernel φ contains EG. This is  very easy, right,  because
what is φ of EG? This is by the previous proposition this is EG
prime. So that means EG is in the kernel φ.

Finally kernel φ is closed under inverses, the third property, that
we require for a group, subgroup, is it closed under inverses? Yes,
because if a belongs to the kernel φ that means φ of a is EG prime,
by definition it is EG prime. By the previous proposition, φ of a



inverse is φ of a inverse by the previous proposition, right and
this, sorry, so let me write it like this,
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Φ of a inverse which, by the previous proposition, is φ of a inverse
which  is  EG  prime  inverse  which  is  EG  prime,  right.  φ  of  a
inverse is by the previous proposition inverse of φ a, φ of a is EG
prime, it is EG prime inverse, inverse of identity itself okay, so
that means a inverse is in  kernel phi. So we have checked three
properties:  kernel  φ  is  closed  under  binary  operation  of  G,  it
contains the identity element and it contains inverses, so kernel φ
is a subgroup of G. 

Now let us check that image is the subgroup of G. I am going to
show that image is of subgroup of G. Similarly, exactly as before
image φ is closed under binary operation of G prime, right, now
we are claiming that image φ is a subgroup of G prime, so it must
be closed under the binary operation of G prime. What are two
elements of image φ? If you recall, image φ is φ of a, a in g, for all
elements  a  of  G, we take φ of a,  so two elements  of  image φ
would be φ of a times φ of b. Let’s say they are both in image φ.
But that  means,  φ of a times φ of b,  by the property of  group
homomorphism, is same as φ of ab, but this is by definition in
image φ, because this is the image of ab, product of φ of a and φ
of b is the image of ab. 

So if  you start  with two things in  image φ,  their  product  is  in
image φ. Image φ contains EG prime, it must contain EG prime in
order  to  be  a  subgroup  but  it  does,  because  φ  of  EG  by  the
previous proposition is EG prime. So EG prime is in the image,
recall again that image is the image of the function, EG prime is
an image of an element. So it is contained in the image, it is the set
theoretic image. Image φ is closed under inverses, this is also easy,



let’s say φ of a belongs to image φ. Then what is φ of a, whole
inverse? By the previous proportion, this is same as φ of a inverse.
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Right, φ of a, whole inverse is φ of a inverse, but φ of a inverse
again is by definition an element of the image. Because it is image
of  a  inverse,  so  image  φ  is  a  subgroup  and  this  proves  the
proposition.  So  we  have  shown  that  kernel  and  image  of
subgroups G and G prime, so this is an important, these are two
important subgroups attached to any group homomorphism. So it’s
a good exercise now for you, to work out the kernel and images in
all  the  previous  examples  that  we  discussed  of  group
homomorphisms.  I  won’t  discuss  all  the  examples,  but  if  you
consider the map from Z to Z, φ of a being na, so we have fixed n,
this  is  the  first  example  of  a  group  homomorphism  that  we
studied, you fix an integer n and send an integer a to n times a, the
kernel of φ is all integers such that na is zero, because zero is the
identity element of Z. 

But this is precisely zero, so the kernel is just zero. Remember
kernel,  being  the  subgroup  of  the  group,  contains  the  zero
elements always, so in this case it is exactly zero element. So this
is a sub group of the first Z, what is the image of Z, phi? This is all
na,  where a is in z,  and this is precisely the group nZ that we
discussed, subgroup of Z obtained by multiples of a, so this is a
subgroup. 

And if you take the determinant homomorphism from GLNR to R
star, what is the kernel of this? Remember φ of A is determinate of
A, kernel of a is the set of matrices in GLNR, such that φ of A
which is the determinate of A, is 1. So this is a subgroup by the
previous proposition and this is called the “Special Linear Group”



denoted SLNR, okay, Glnr is called the “General Linear Group”.
Special  linear  group  is  a  group  of  invertible  elements  with
determinant 1. That’s the kernel. What is the image of φ? 
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Image  of  φ  is  the  set  of  real  numbers  which  are  obtained  as
determinant of A, for an invertible matrix. So image consists of all
determinants  as you vary the invertible matrix in Glnr, what  is
this? It’s certainly a subgroup of, by the previous proposition, it is
a subgroup of the multiplicative group of nonzero real numbers.
But I claim in fact, it is all of nonzero real numbers, why?

I claim that image of the determinant map is all of nonzero real
numbers. In other words, given a nonzero real number,  r let’s say,
there  exists  an  invertible  real  n  by  n  matrix  A  such  that
determinant of A is r. Note that if I show this, then I have justified
saying that image of φ is R star, because if there is such a matrix,
it is in Glnr, so A is in Glnr, that is to say it is an invertible real n
by n matrix and its determinant is r. So r would be in the image, so
if I want to show image of φ is R star I need to verify this, but
what is such a matrix? I simply can take, I will take a diagonal
matrix, I will put r in the first left hand side position and I will
take  ones  everywhere,  I  will  take  one  everywhere  else  on  the
diagonal,  zeros  off  the  diagonal.  This  is  certainly  an  invertible
matrix  because  its  determinant  is  r  and  r  is  non  zero.  It  is  an
invertible  matrix,  it  is  size N by N, it  has real  entries.  So this
matrix will have determinant because determinant of a diagonal
matrix is the product of diagonal entries, determinant of A is r. So
the image of the determinant homomorphism is all real numbers,
non-zero real numbers of course, we want non-zero real numbers. 
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Just one more example I want to do, this is also something we
discussed  in  the  previous  video.  If  you take,  G is  an  arbitrary
group,  fix an element of G and consider group homomorphism
from the integers to the group by sending n to An  this is a group
homomorphism was something  we checked earlier, what  is  the
kernel of φ? This is all integers such that φ of A, in this case An  is
identity of G. This is a subgroup of Z. This is a subgroup of Z, so
this is all integers such that A power n identity is a subgroup of Z.
What is the image of φ? This is An so remember this is φ power n
as n varies over integers, this is by definition image of φ, but what
is φ power n? This is just A power n has n varies over integers. In
other words, this is just A-3, A-2, A-1, A0 which is EG, A, A2  if
you recall and you remember now from a previous video we gave
a name for this group.

This is simply the subgroup generated by A, this is the subgroup
generated by image of φ is the subgroup generated by A. Let’s
look at kernel slightly more carefully, so now what is kernel of the
same example, in this same example what is the kernel of φ? So
kernel of φ, as I wrote earlier, is all integers such that A power n
equals EG and if you recall again from a previous video we have
already classified all the subgroups of the integers.
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What are they? Recall we earlier classified, so remember this is a
subgroup of Z, we already classified all subgroups of, what are
they? They are of the form, they are multiples of a fixed integer,
so we have already used n and a here, so I am going to use BZ,
right, they are of the form BZ. BZ,  being all multiples of a fixed
B, so BZ is BN, where N varies over, so they are of the form BZ,
where BZ is this, so every subgroup of integers is like this.

In particular, kernel is also like this, so in our example kernel φ
being a subgroup of Z is of the form kernel φ is BZ for some



integer, in fact, B is a non-negative integer. See if you go back and
see the video where classified subgroups of Z they are of the form
BZ, for a non-negative B. We can always if, ok, I don’t want to
repeat the proof, but we first  rule out the case that it  is  a zero
subgroup, in which case it is of the form zero times Z.

Otherwise there are some numbers in it, nonzero numbers, hence
there must be some positive number in it and we take the smallest
positive number and show that all elements of this subgroup are
multiples  of  it,  so  B is  either  0  or  positive.  So  now this  B is
actually something that you are familiar  with,  B as an exercise
note that B is nothing but the order of, recall that, from before
what is order of A? So we have two possibilities. 

So what is order of A? We first look at multiple of A, so we look at
E, A, A squared, A cubed, we keep looking at this, either you will
never  hit  E  again  the  identity  element  or  you  will  hit  E
somewhere. It is the first place you hit E if you hit E. So order of
A has two possibilities, it is either, okay, maybe I should write like
this, if A power n is e for some positive integer,
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n, then order of A is the smallest positive integer m such that A
power m is E, this is such that. Okay, so S.T.  always stands for
“such that”. So if A power n is identity for some positive integer n,
I am going to simply look at the least positive integer which has
that  property. If  A power  n  is  not  equal  to  E  for  any  positive
integer n then I will simply define the order of A to be infinity, and
now I claim that looking at the map, the group homomorphism
which sends  integer n, A power n in a group G, we noted that
kernel  is  of  the form BZ, it  is  all  multiples  of  B,  so kernel  of
remember φ, is all integers n such that A power n is identity. And
we saw that it is BZ, for some integer which  is non-negative. So
it’s either 0, in which case kernel φ is zero, kernel φ is the zero set



and in this case A power n cannot be equal to A for any positive
integer, so order of A is infinity. 

So actually I should not say this, so this is not right, B is nothing
but the order of A is not quite true. B is related , I should write B is
related to order of A, if B is 0 then order of A is infinity. If B is not
0, so B is positive, then kernel of φ is BZ and now the order of A
is actually B. So in this case order of A is B because remember
kernel  is BZ and B is positive,  so the smallest  positive integer
such that An is B, so order of A is B. 

So if the kernel of this map is kernel of this map is zero if kernel
of this map is zero then order of A is infinity and kernel of this
map is nonzero then order is equal to the generator of the group,
so B is related to order of A. So these are some of the properties of
group homomorphisms and I am going to stop here in this video
and in the next video I am going to talk about, so in this video we
have looked at basic properties of group homomorphisms, namely
that they send identity element to the identity element, inverses to
inverses, we looked at two very important groups associated to a
group homomorphisms, namely the kernel and the image and we
worked  out  what  these  are  in  some  of  the  examples  of  group
homomorphisms   that  we  looked  at.  In  the  next  video  I  will
continue  my  study  of  group  homomorphisms  and  define
isomorphism of groups. Thank you. 


