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Chromatic Number and Max. Degree

Welcome to the second part of lecture 18 on Graph Theory. In the first part of this lecture

we  talked  about  2  lower  bounds  for  chromatic  number  of  a  graph.  That  chromatic

number of a graph is always greater than equal to the tick size of the graph, and the other

one is that the chromatic number of the graph is greater than or equal to the cardinality of

b by maximum independent set size.
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So, the second bound that we got is the proposition 2 probably that chi G is greater than

equal to V G by alpha G. Now one remark sometime this bounce works fine, but they

could be very loose also sometime. So, this bound could be very loose, and we give an

example to sort of support this remark. Let me concentrate this graph. This graph has n

components, n components. The first component is k 1; that means, just one vertex.

The second component is also complete graph with one vertex; that means, just a single

vertex. And you have such components n minus 1 such components right. And then the

nth  component  is  complete  graph  with  k  vertices.  So,  this  is  the  graph  G it  has  n



components is the graph G. Now what is the size of maximum independent set for what

is alpha G here? Alpha G is clearly n because you can pick in the independent set this n

minus 1 vertices from n minus 1 components, and one vertex from k k. So, that will give

you independent size maximum independent set of size n. And what is the number of

vertices here V G is equal to here you have k vertices, and in this n minus 1 components

you have n minus 1 vertices, so n minus 1 plus k.

Now, what is the chromatic number of this graph G the chromatic number of this graph is

like we have used that you can use that result that chromatic number of a graph G is

maximum of chromatic number of different components. So, c is a component. So, this

component  required  one  color  this  component  required,  one  color  this  component

required one color, but this component required k colors. So, the chromatic number of

this graph is maximum of 1, 1, 1 and k which is equal to k right.

So, as we can see that the chromatic number is k, and our this bound gives that chi G is

greater than equal to V G by alpha G, which is n minus 1 plus k by n. And this will be

less than 2 for large n right. That is easy to see, but actual chromatic number is k. So, the

lower  bound  says  that  the  chromatic  number  is  something  less  than  2,  but  actual

chromatic  number  is  k.  So,  that  is  mean  for  this  graph  the  bound  given  by  this

proposition 2 is very loose ok.

So,  we talked about  2 lower bounds for chromatic  number. Now we move to upper

bound for chromatic number.
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And we a give a greedy algorithm to color the vertices of a graph. So, chromatic number

and it is relation with maximum degree. And also this talk about the upper bound for

chromatic number. So, I will start with an algorithmic technique to color the vertices of a

graph, the colors are 1 2 3 like this. You are not really going to use different colors we

will use numbers instead of colours ok.

Now, what is this greedy colouring algorithm? The greedy colouring relative to a vertex

ordering v 1 v 2. So, this colouring algorithm depends on how you order the vertices of

the  graph  G.  And  the  greedy  colouring  relative  to  a  vertex  ordering  is  obtained  by

colouring the vertices in the order v 1 v 2 v n. So, you choose an arbitrary ordering of the

vertices. This algorithm does not say how you ordered the vertices.

So, you have to just decide on an arbitrary ordering of the vertices. And then you colour

the vertices in this order you colour the vertex v 1 first.  And then v 2 first with this

specific rule you assign to v i in the ith step assign to v i the smallest indexed colour not

already used for it is neighbour among. I will explain this one among v 1 v 2 v i minus 1.

And in a vertex ordering, what about ordering you take it does not matter each vertex has

at most delta G neighbour on the left or earlier neighbours.

So, the greedy algorithm cannot force to use more than delta G plus 1 colors. So, this is

what the algorithm is, but I need to explain it. So, what you do is that a given a graph you

just decide on an arbitrary ordering of the vertices, and then you colour the vertices in



this order only. So that means, you colour v 1 first and then v 2 first. So, when you are

assigning a color to v 2 for example, you use the smallest index colour not already used

for it is neighbour on the left hand side; that means, you use the smallest index colour for

v 2 which is not used for v 1 provided v 1 is neighbour of v 2. And the number of colours

required to greedily colour the graph it depends on what ordering you have taken.

If you change the ordering of the vertices the number of colours required to colour the

graph might differ. So, I will give an example that how the number of colours required

by the greedy algorithm changes when you change the order of the graph order of the

vertices. So, let me give this example. So, I considered a bipartite graph, say this one.

You have 4 vertices in the left side and 4 vertices on the right side and I call them or

level them x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8.

So, x 1 is adjacent to x 7 x 6 x 5 x 2 is a adjacent to x 8 x 6 and x 5. X 3 is adjacent to x 5

x 7 and x 8 and x 4 is adjust adjacent to x 6 x 7 and x 8. Now the algorithm does not

know that whether the this is a bipartite graph or some other graph. So, it will decide on

some arbitrary ordering if I choose this ordering for example, is x 1 x 2 x 3 x 4 x 5 x 6 x

7 and x 8.

Suppose this is the ordering I decide one and then I will start colouring with x 1 and I

will colour this vertex x 1 1. So, I give colour 1 2 x 1. Now when I colour x 2 I will use

the smallest index colour not already used for it is neighbour among the previous on it is

it is neighbour on the left  hand side. So, x 2’s neighbour on the left  hand side is no

neighbour on the left hand side. So, I can use the smallest index colour that is available.

So, I can use one again for x 3, it does not have. So, x 1 and x 2 are not neighbour of x 3.

So, I cannot you I can use the same colour one x 4 x 1 x 2 x 3 are not neighbour of x 4.

So, I look at the neighbour of a vertex x I on it is left hand side only. I do not look at the

right hand side at this moment. So, I can give colour one. Now for x 5 I look at it is

neighbour on the left hand side. So, x 5 has neighbour x 3, x 2, x 1, x 3, x 2 and x 1. So

but all of them are coloured one, so the colour among the colours 1 2 3 4. I can use the

smallest index colour for x 5 that is 2 right. For x 6 again I look at it is neighbour on the

left hand side and the neighbour of x 4 are sorry, neighbour of x 6 are x 4 x 2 and x 1 all

of them are coloured one. So, I can use colour 2 for x 6.



Similarly, for x 7 you can check that all  it  is neighbour on the left  hand side I will

coloured one. So, I can use colour 2 for x 7 and similarly for x 8 I can use colour 2 again

right. Now it is good that you got a the greedy algorithm coloured this bipartite graph

with 2 colours, as I said that if  you change the ordering of the vertices the required

number of colours might change. So, if you take this ordering for example, say x 1 x 1

because you can start with any arbitrary ordering, and the number of colours required

depends on what ordering you choose.

So, x 1, x 8, x 2, x 7, x 3, x 6, x 4, x 5. Now if you choose this ordering, because the

ordering is an arbitrary ordering you do not know in which order you have to color the

vertices. So, if you choose this ordering then first for x 1 you can use colour one fine for

x 8 it has no neighbour on the left hand side. So, again you can use the colour one. Now

for x 2 has neighbour on the left hand side 8. So, you cannot use colour one again for x 2

because x 2 which is adjacent to x 8. So, you have to use the smallest index colour which

is has been not used for it is neighbour on the left hand side. So, you have to use colour 2

for x 2.

Now, look at x 7, x 7 has neighbour x 1 and x 1 is coloured with one. So, for x 7 you

have to use the smallest  index colour available  that is  2. Now go to x 3,  x 3 has 3

neighbours x 5 x 7 and x 8. So, the neighbour of x 3 is x 7 and x 8 on the left hand side.

So now, you can see that the 2 neighbours of x 3 they are already coloured 1 and 2. So, x

3 cant.  So,  x 3 has to  use the next  smallest  index colour  available.  So,  x  3 will  be

coloured with colour 3. And similarly x 6 is on the left hand side it has neighbour x 2 and

x 1 x 2 and x 1.

I can remove this 2 now and they are coloured 1 and 2. So, the smallest index colour not

used for it is neighbour on the left hand side that is 1 2 are already used. So, you have to

use colour 3 for x 6. Now look at x 4. X 4 has neighbour x 6 x 7 and x 8. X 8 is one

neighbour for x 4 on the left hand side. X 7 is another neighbour for x 4 and x 6 is also a

neighbour of x 4. And so, the neighbour have already used the colour 1 2 and 3. So, you

have to use the next smallest available colour that is 4, smallest indexed colour that is 4.

And similarly for x 5 you can check that you have to use colour 4.

So, for this ordering you can see that the number of colours used by the greedy algorithm

is 4. So, this explains that how many colours you need to use by the greedy algorithm



that depends on completely on the ordering of the vertices how do you order the vertices.

And this algorithm does not talk about how to order the vertices. So, that the number of

colours required will be less. So, this example explains that if you change the ordering of

the vertices you required different number of colours right. So, we talk and clearly when

you are colouring the ith vertex v i, it can have maximum delta G neighbours on the left

hand side. 
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On it is left because the degree of this vertex is maximum delta G right. And it might

happen that all the neighbours on it  is all  the delta G neighbours they have different

colours.

So, for v i you have to assign delta G plus 1 the colour delta G plus 1. So, that is why this

proposition  is  a  obvious  consequence  of  the  greedy algorithm,  that  this  gives  upper

bound that delta G is always less than or equal to delta G, sorry chromatic number of G

is always less than equal to delta G delta G is the maximum degree of the graph G plus 1.

So, this is also explained in the in the greedy algorithm, that in any vertex ordering each

vertex v i has at most delta G neighbours on it is left. So, the greedy algorithm cannot

force to use more than delta G plus 1 colours.

So, this clearly says that the chromatic number of the graph G is always less than equal

to  the  maximum  degree  plus  1.  So  now,  just  for  information  we  talk  about  some

theorems results  known in this  area theorem, brooks theorem 1941. It  says that  if  G



contains a vertex v of degree d v strictly less than delta g; that means, it is not a delta G

regular graph. That is at least one vertex which has degree less than the highest degree.

Then you can improve this upper bound slightly that delta G sorry the chromatic number

of the graph G is less than equal to delta G. So, in this case when there is a vertex of

degree strictly less than delta G, you can this theorem gives an ordering of the vertices

which requires depth first search, which is a technque in algorithm you start with one

vertex and systematically you visit all the vertices which are accessible from the vertex v.

So, since we do not know depth first search algorithm we will not talk about the proof of

this algorithm.

But the outline of this outline of the proof of this theorem that you start with vertex v

which has degree strictly less than delta G and applied d f s. And so, the d f s will give

you ordering of the vertices. And you colour the vertices of the graph in a reverse order

of the d f s. So, this is just for information that you can improve your result slightly

instead of delta G plus 1 it can be delta G only. Now one which connected graphs do not

satisfy this condition. This is just a remark of observation that chi of G is less than equal

to delta G.

You look at this complete graph with n vertices. We know that chi of k n is equal to one

sorry, is equal to n. And delta of k n is equal to n minus 1. So, here this connected graph

k n the complete graph with n vertices does not satisfy this condition. Another graph is

cycle  with odd number of  vertices  c  2  n plus  1.  And we know that  what  cycle  has

chromatic number 3 and the maximum degree of cycle c 2 n plus 1 is equal to 2.

So, chi of c n plus 1 is delta plus 1 basically right. So, here is the other theorem again by

brooks 1941, that if G is not k n it is not a complete graph or not a odd cycle c 2 n plus 1

for some n, except this 2 graphs for the other graphs chi of G. Of course, I am talking

about connected simple graphs chi of G is less than equal to delta G. So, that is all. So,

we have learnt what is a chromatic number of a graph. And we talked about it is lower

bound using the clique number maximum clique size and maximum independent size,

size of maximum independent set. And also we talked about upper bound based on the

maximum degree of the graph G. That is all for today.

Thank you very much.


