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So let us now see how we apply a finite difference technique for solving a linear boundary

value problem governed by Dirichlet boundary conditions, let us take the following example.

So we have a second–order equation – y double prime + Pie square y = 2 Pie square into Sine

Pie x in the interval 0 to 1. And there are Dirichlet boundary conditions, which are specified

at the endpoints 0 and 1 of this interval 0 to 1, so y of 0 is 0 and y of 1 is 1. So we observe

that p of x is 0 and q of x is Pie square and r of x is 2 Pie square into Sine Pie x with a

negative sign.  And since p of x is  0,  q of x is  positive on the interval 0 to  1.  We have

guaranteed of a unique solution to the finite difference equation for any value of h, this we

have already established, h must satisfy the condition that h is less than 2 by L.
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What is L? Modulus of p of x must be less than or equal to L for x in the interval a, b. So

since p of x is 0 in this case, we are guaranteed of a unique solution to this finite difference

equation for any value of x. So we start applying all the steps that we have discussed for the

general second–order differential equation governed by boundary conditions, so in that step

one is to partition the intervals 0 to 1. So let us divide this interval into 4 equal sub intervals

of width h, which is 1 – 0 by 4 by means of points x 0, x 1, x 2, x 3, x 4 such that x 0 is 0, x 1

is 1 by 4, x 2 will be half, x 3 is 3 by 4 and x 4 will be 1. What do we have to do next, we will

have to evaluate the differential equation at each of the interior points namely x 1, x 2, x 3, so

it is – y double prime at i + Pie square y at i that is equal to 2 Pie square into sine pie x i for i

= 1, 2, 3.
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What  is  the  next  step?  We should  replace  the  derivatives  that  appear  in  the  differential

equation by appropriate finite difference scheme. So let us again replace the second order

derivative in the differential equation by second order accurate central difference scheme. If

we do that then we get – y i – 1 + twice y I – y i + 1 by h square, h is 1 by 4 + order of h

square because the error in this approximation is of order of h square + Pie square into y i and

that is equal to 2 Pie square into sine i Pie by 4 for i = 1, 2, 3. What should we do then? Next

step is to drop these truncation error terms and replace each of the exact solution y i at these

interior points by the corresponding approximate solution w i.
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So when we do that, we get – w i – 1 + this coefficient into w i – w i – 1 and that is equal to

the right–hand side, i = 1, 2, 3 and this equation has been obtained after multiplication by h

square,  which is 1 by 4 the whole square.  Now we look at  the boundary conditions,  the

boundary conditions are that y of 0 is 0 and therefore, w 0 is 0 and y at 4 is 0 and hence W4

will be 0, so we obtain the system A w = b as follows. So we take w 0 = 0 as the first

equation, the next 3 equations are obtained by applying this at i = 1, 2, 3 and our last equation

is given by w 4 = 0. So we combine all these namely I have i = 0 equation given by this, for i

= 1, 2, 3, equations will be obtained from here and finally when i = 4, I have my equation

given by w 4 equal to 0.
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So I take my unknown vector as 5 cross 1 vector which has components w 0 to w 4 and I

write down the system A w = b, with coefficient matrix a to b a 5 cross 5 matrix, so equations

are expressed here. Corresponding to w 0 = 0 how do I express this, so 1 into w 0 + 0 into w

1 + 0 into w 2 plus 0 into w 3 + 0 into w 4 is equal to the right–hand side b and w 0 = 0, so b

0 will be equal to 0. 
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So I apply these equations one by one and write the system A w = b and we solve the system

with the right–hand side vector b given by this and we observe that the solution vector w is

given by this, which tells us w 0 is 0, w 1 which is an approximate solution at x 1 which is 1

by 4 namely y at 1 by 4 is approximated by w at 1 by 4 and that is given by this, y at half is

this and that gives you an approximation namely 1.025830 and so on, so the solutions of the

interior points which are approximations to the exact solutions y at the interior points are

given by these. And we know that the exact solution of the differential equation is given by y

of  x = Sine  Pie  x,  so it  is  natural  to  see whether  theapproximate  solution that  we have

obtained by taking the step size h to be 1 by 4 is reasonably a good approximation to the

exact solution of the problem.
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So we list the exact solution at each of the x i and compare it with the approximate solution at

the corresponding letter x i given by w i, so we have a table of values where the letter x i are

specified namely 0, 1 by 4, half, 3 by 4 and 1 at which the approximate solution and the exact

solution are written down and we compute the absolute error namely Mod y i – w i, the exact

– the approximate solution. And this column tells us the accuracy of the approximate solution

is quite reasonable in spite of the fact that the step size h is which is taken to be 1 by 4 is not

very small.

So we know that  the system possesses a unique solution for any value of h because the

conditions that we had stated were satisfied, which are sufficient conditions and therefore,

solution possesses a unique solution and we had taken h to be equal to 1 by 4 and we observe

that our approximate solution is such that it is reasonably accurate solution, which compare

very well with the exact solution for this problem. So we have illustrated the finite difference

method  of  solving  a  boundary  value  problem  governed  by  the  second  order  equations

subjects to Dirichlet type of boundary conditions. What happens to the maximum absolute

error in the approximate solution as a function of the number of subinterval?
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So when I  take  N to  be  4,  my h  is  1  by  4  so  I  would  like  to  increase  the  number  of

subintervals namely double the number of subintervals say 8. In this case h will be halved

namely h will be 1 by 8 and I continue to double the number of subintervals, which I divide

the intervals 0 to 1, by doing this every time the step size is halved. So I would like to now

see what is the maximum absolute error and the corresponding error ratio, namely when I

take 8 subintervals this is the maximum absolute error, and when I take 4 subintervals this is

the maximum absolute error, so what is the ratio of this to this. And I would like to compute

the error ratios by doubling the number of subintervals each time, so let us just look at this

table and focus our attention on this column namely the column which specifies the error

ratio.
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 So the table actually presents the numerical verification of the second order accuracy of the

finite  difference  scheme that  we have  used  in  the  solution  of  the  linear  boundary  value

problem with Dirichlet boundary conditions. So we observe that as N is doubled, h is halved

and the approximation error is reduced roughly by a factor of 4, let us just see the error ratio

so we observe that each time when N is double and h is halved, this approximation error is

roughly 4 times reduced that is what happens throughout. What does it indicates? It indicates

that we have used second order accurate difference scheme to replace the derivative which

appear in the differential equation and this is reflected in the fact that the approximation error

is reduced by a factor of 4 and so the table clearly shows the numerical verification of the

second order  accuracy of  the  finite  difference  scheme that  we have  used in  solving  this

boundary value problem with Dirichlet boundary condition.



(Refer Slide Time: 12:43)

So this is another example, which is again a boundary value problem governed by second

order differential equations. Let us again solve this problem subject to Dirichlet boundary

condition, so the differential equation is given here and interval of interest is 0 to 1 and it is a

linear boundary value problem and the conditions are y of 0 is – 1 and y of 1 is 0, so the

unknown function is specified at the endpoints of the interval, so they correspond to Dirichlet

type of boundary conditions.
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Now let us find out what are p of X, q of x in this differential equation. p p of x is – of x + 1,

q of x is 2 which is positive, and we observe that maximum of modulus of p of x for x in this

interval is 2 so this gives us L, so what should we choose our step size h as? It should be less



than 2 by L, L here is 2 so take our step size h to be less than 2 by 2 that is less than 1. So we

are guaranteed of a unique solution of the finite difference equation for any value of h, which

is less than one. What is it that we should do to solve this system?
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Step 1 is to partition the interval 0 to 1 into 4 equal subintervals, so step size would be 1 by 4.

So what are these points, the points are x 0, x 2, x 3, x 4 of which x 1, x 2, x 3 are interior

points, x 0 and x 4 r boundary grid points. So we replace the derivative which appears in the

differential equation by appropriate second order accurate central difference formula multiply

fraud by – h square and then collect  the like terms and then obtain the finite  difference

equation, which is given by this, so this is a lead for i = 1, 2, 3, which are the interior points. 
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 What are p i? p i are given by – of x i + 1, what is x i, x i is x 0 + i h, x 0 is 0, h is 1 by 4, so

x i is i by 4, so – of x i + 1 is – of 1 plus i by 4. What about q? q of x is 2, so q of x i that is q i

is 2. What about r of x? It is 1 – x square into e power – x, so that will r i is 1 – x i square into

e power – x i and we know x i is i by 4 so we have substituted for x i as i by 4 and we have r i

to be given by this.
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What other information do we have? We have w 0 to be – 1 and w 4 to be 0, so we now can

write  down the  algebraic  system equation  in  matrix  form namely  A w =  b,  so  the  first

equation the w 0 = – 1 is given by the 1st equation here; 1 into w 0 + 0 into w 1 + 0 into w 2,

etc is – 1. Then interior points we have the finite difference equation, from there we write

down these 3 equations. The last equation tells us that w N is 0, what is w N? That is w 4, so

w 4 is 0 and that is what is expressed here in the last row of this system. So we solve this

system and obtain the solution vector w as this, which gives us the approximate solution at

the interior points; 1 by 4, half and 3 by 4, which approximates the exact solution y at these

points and the solution is given by this. We also know that the exact solution of the system is

y of x = x –1 into e power – X, so we would like to find out what the absolute error is.
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So in the table we present the x i values, the corresponding exact solution at these x i and the

approximate solution at these x i and compute the absolute error. And we observe that the

approximate solution compares very well with the exact solution since the absolute error is

very  small.  So  again  we see  that  the  approximate  solution  matches  well  with  the  exact

solution in this case and the conditions that we have imposed on p of x and q of x are satisfied

and they are sufficient to ensure that the system has a unique solution and this approximate

solution compares well with the exact solution. So we have discussed how to solve linear

boundary value problem subject to Dirichlet boundary condition by using a finite difference

method.

The steps involved are such that we replace the derivatives by finite definite approximation

and arrive at  a system of algebraic equation and the solution of this system gives us the

approximate solution of the interior points, which are obtained by dividing the interval into N

equal  subintervals.  And we also  have  determined the  conditions  under  which  his  beliefs

labour  boundary  value  problem,  which  is  converted  into  a  system of  algebraic  equation

posses a unique solution, so we take care to choose the step size h in such a way that the

conditions specified are satisfied, then we are guaranteed that with a unique solution for the

system A w = b and we will be able to obtain the approximate solution to this boundary value

problem by finite difference method of the interior points at which we seek solution.

Now the question comes, what do we have to do if we have a boundary value problem, which

is governed by boundary conditions which are not of the Dirichlet type? Namely boundary



conditions are either of the Robin type of the Neumann type, so we shall discuss the details

now. The procedure is analogous to what we have done for the Dirichlet problem with slight

modifications namely with boundary conditions are of the Robin type or the Neumann type,

so  we  have  to  make  some  modifications  to  write  down  these  boundary  conditions  and

incorporate them into algebraic system, so let us see how this can be done.
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We now consider linear boundary value problem with non–Dirichlet boundary conditions.

Consider the one–dimensional 2 point boundary value problem, it is a linear boundary value

problem, so the differential equation is y double prime = p of x y prime + q of x into y + r of

x for x in the interval a, b and the boundary conditions are of the Robin type. We impose the

condition that Alpha 2 is different from 0 and Beta 2 is different from 0 because we are now

interested in boundary value problem with non–Dirichlet boundary conditions. So as before

you partition the interval a, b into N equal subintervals by points x 0, x 1, et cetera, x N – 1, x

N, where the step size h is b – a by N, so the points x i are given by x 0 plus i h for i = 0 to N.
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So as before, let w i denotes the approximation to the exact solution y of x at letter x = x i, so

there are N + 1 unknowns w 0, w 1, et cetera, w N so we require N + 1 equations to solve for

these N + 1 unknowns out of which N – 1 equations can be obtained as before by replacing

the  derivatives  which  appear  in  the  differential  equation  by  means  of  appropriate  finite

difference approximation. And using the resulting finite difference equation at the interior

points i = 1, 2, 3 up to N – 1. So if we do that then we end up with this equation, which is

valid or i = 1 to N – 1, this is exactly obtained in the same way as we have done in the

previous case where we have explained the method of solution of boundary value problem

with Dirichlet boundary conditions. Now, we have to apply the boundary conditions and see

what we get from the boundary conditions.
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Let us look at  boundary conditions,  they are either of the Robin type or they are of the

Neumann type must so we deal with the boundary conditions as follows; namely when we are

given the boundary condition at the left endpoint namely x 0, which is A we introduce a

fictitious node x f to the left of x 0 such that x 0 – x f is h, the step size that we have already

taken. I repeat, when we want to apply the boundary condition at the point x 0 and get the

corresponding equation,  which should be incorporated in  the algebraic  system we take a

fictitious point letter x f to the left of x 0 at a distance of x 0 and call the approximate solution

at that point as w f.
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And I apply at x = x 0 what happens to the finite difference equation? We see that the finite

difference equation turns out to be this, when I take i = 0 in the equation that I have shown.

This involves w f, do I know w f? Yes the 1st boundary conditions which is prescribed at the

left–hand point A will help me to find out what w f is, let us see how it is obtained. What is

the boundary condition? Alpha into y of a + Alpha 2 y prime a is Alpha 3, so this is Alpha 1

into y of a is y at x 0 and its approximation is w 0, so Alpha 1 into w 0 plus Alpha 2 into we

need replace the derivative y prime at x 0, what is y prime at x 0? We replace it by a second

order accurate finite difference method what will that be, that is going to be w 1 – w f by 2 h,

let us see how we have obtained.

So we want to apply the second–order finite difference approximation to the 1 st derivative at

this point x 0, so y prime x 0 is equal to the value of y at this point – the value of y at this

point x f divided by the distance between the 2 points namely 2 h and that is what we have

written here. So y prime at a is replaced by w 1 – w f by 2 h and the boundary conditions tells

us that this is equal to Alpha 3. And from here we can obtain what w f is, so w f will be w 1 –

2 h by Alpha 2 into Alpha 3 – Alpha 1 w 0. Of course w 0, w 1 are unknowns, so w f is also

unknown that appears in the differential equation and since x f is a fictitious point, I am not

interested in  obtaining the solution there so I  express the solution at  x f  in terms of the

solution at the other points at which I seek the solution.
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So x = x 0 = a, the equation that I should use is this which is obtained by substituting for w f

in this equation, so this is going to be the equation that I should use at x f = x 0, which is a.

Now the situation has  been obtained when we have a  Robin boundary condition.  Let  us



consider the special case, when we have Alpha 1 to be equal to 0 then our boundary condition

turns out to be Alpha 2 y prime a is Alpha 3, so y prime at a is Alpha 3 by Alpha 2 which I

denote by Alpha.  So y prime at  a is Alpha and therefore that corresponds to a Neumann

boundary condition because the derivative alone is specified at one endpoint a so in that case

I can reduce the equation that I should use from here by substituting Alpha 1 = 0 in this, so

that gives you the equation as this.

So if a Neumann boundary condition is specified as the first boundary condition, then the

finite difference equation that should be used and should be incorporated in the algebraic

system is given by this. So I repeat, if it is a Robin boundary condition this will be used in the

algebraic system as the first equation. If Neumann boundary condition is specified as the first

boundary condition at the endpoint a, this equation will be used as the first equation in the

algebraic system. And from second to N – 2 equations are obtained from the differential

equation by replacing the derivatives by appropriate finite difference approximations and so

on. And what happens when the boundary condition which is specified at the other endpoint

namely B is of the Robin type?
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Namely, Beta 1 into y of b + Beta 2 y prime at b = Beta 3, in this case again this y prime b

will have to be replaced by a second order accurate central difference formula that would

require an additional point to the right of b so we introduce a fictitious point, b is our x N so

the fictitious point, which appears on the right–hand side is going to be x N + 1 such that x N

+ 1 – x N is h, so the derivative at little x N is going to be value at x N + 1 – value at x N – 1

divided 2 h, so it is going to be y prime at b will be replaced by w N + 1 – w N – 1 divided by



2 h. So replacing 1 prime b in that way the equation that should be incorporated as the last

equation in the algebraic system will be obtained by substituting for w N + 1 obtained from

this boundary condition. So we have the following system when we complete doing all this

which when solved will give us an approximate solution
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So let us consider an example to illustrate how we can solve the boundary value problem for

non–Dirichlet boundary conditions. We now consider an example to illustrate the method of

solving boundary value problem governed by differential  equations  of second order  with

non–Dirichlet boundary conditions. So the given differential equation y double prime y =

Sine 3X in the interval 0 to Pie by 2. The first boundary condition is of the Robin type, y of 0

+ y prime of 0 = – 1 and second boundary condition is a Neumann boundary condition, y

prime at Pie by 2 is 1, so we partition the interval 0 to Pie by 2 into 4 equal sub intervals of

width h, which is Pie by 2 – 0 by 4 which is Pie by 8 so our x i will be i Pie by 8 because x 0

is 0 and i will vary from 0 to 4.
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Let us find out what are p of x and q of x and r of x. p of x is zero, q of x is –1 and of x is

Sine 3 X. So for each i p i is 0, q i is – 1 and letter r i is sine 3 i Pie by 8 for i = 0 to 4. And we

also know that Alpha 1 and Alpha 2 take the value 1, Alpha 3 is – 1 and beta is 1 because the

second boundary condition is a Neumann type of boundary condition. So we obtain now the

system  of  finite  difference  equations  in  matrix  form.  What  do  we  do,  we  replace  the

derivatives in the system by appropriate finite difference methods so we would like to replace

them by second order accurate finite difference formulas in this problem and then evaluate

the  differential  equation  at  the  interior  points  and  obtain  the  resulting  equation  for  the

unknowns  which  are  approximations  to  the  exact  solutions  of  the  differential  equation,

namely the unknowns are w i.
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When we do all this we end up with this equation namely; w i + 1 – 2 w i + w i – 1 by h

square + w i is Sine 3 x i for i = 1, 2, 3 at the interior points. Now the 1st boundary condition

is a Robin boundary condition and therefore we have to replace the derivative there by means

of a second order accurate central difference scheme, when we do that we get w f which is the

approximate value of y at x f, where x f is a fictitious point introduced to the left of x 0. So w

f turns out to be this and it is expressed in terms of w 0 and w 1, so this is obtained from the

1st boundary condition which is of the Robin type.
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The second boundary condition is a Neumann type of boundary condition and therefore we

replace  the  derivative  there  by  means  of  the  second  order  accurate  finite  difference



approximation. So y prime and the endpoint Pie by 2 is specified to be 1, so we introduce a

fictitious point x N + 1 to the right of x N and replace the derivative at x N by the value at

this point – the value at the left point, which is x N – 1 divided by the distance between the 2

points which is 2 h and that is what we have done here; w N + 1 – w N – 1 by 2 h is 1, this is

the approximation that we get when we replace the first derivative at the endpoint namely x N

= Pie by 2. From here we get what w N + 1 is which is the approximate solution value at the

fictitious point which we have introduced namely x N + 1.
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So all the equations that have to be incorporated into the system are available with us so we

write down the system A w = b as this and the coefficient matrix and w has components w 0

to w 4 and vector B is given by this. In this coefficient matrix we have d which is given by 2

– Pie by 8 the whole square so we solve this system and obtain the solution vector as this. So

we have been able to use finite difference method to obtain approximate solutions to the

boundary  value  problem where  non–Dirichlet  type  of  boundary  conditions  are  specified

namely; Robin type of boundary conditions and Neumann type of boundary conditions are

specified.  So  we  would  like  to  now see  whether  we can  obtain  the  absolute  and  check

whether our approximate solution to this problem is reasonably good, so let us find what the

exact solution is.
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We observe that the exact solution is given by y of x = – Cos x + 3 by 8 Sine x – 1 by 8 into

Sine  3  x.  So we write  down in  this  table  the  x  i  values  the  corresponding approximate

solutions that we have obtained using finite difference method, the exact solution and then

compute what the absolute error is at each of these x i, and we observe looking at the column

in  which  the  absolute  error  which  is  the  difference  between  the  exact  solution  and  the

approximate solution at each of the x i, we observe that the approximate solution agrees quite

well  with  the  exact  solutions  since  the  absolute  error  is  small.  So  the  accuracy  of  the

approximate solution is quite reasonable in spite of the fact that the step size h chosen by us

namely Pie by 8 is not very very small.
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In addition we would like to check the numerical accuracy of the second order scheme that

we have used to solve this boundary value problem. So what do we do in order to access this?

We increase the number of sub intervals into which we have partitioned the interval 0 to Pie

by 2.  We used 4 sub intervals in  our  computations  earlier  and obtained the approximate

solution, so we double this number of sub intervals namely we divide the interval 0 to Pie by

2 into 8 equal sub intervals of step size Pie by 2 by 8 so that Pie by 16 is h, so h is halved as a

result of doubling the number of sub intervals and we continue to do this and in each of these

cases  we list  down what  the maximum absolute  error  is  and see what  the error  ratio  is,

Namely the ratio with N = 8 by N = 4 of the maximum absolute error that we have obtained.
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We observe that the error is roughly reduced by a factor of 4 when we double the number of

sub intervals say from 4 to 8, which clearly indicates the numerical accuracy of the second

order finite difference scheme that we have used in solving this boundary value problem by

finite difference method. So this happens each time we double the number of sub intervals in

which case the step size h is halved, so h become smaller and smaller and we observe that the

error ratio in this case is close to 4 showing that our approximate solution is very close to the

exact  solution  and  the  second  order  scheme that  we have  used  has  helped  us  to  obtain

solution which are very close to the exact solution. So in this lecture we have discussed finite

difference methods of solving linear boundary value problems, which are governed by second

order  differential  equation  subject  to  either  Dirichlet  type  of  boundary  conditions  or

Neumann type of boundary conditions or Robin type of boundary conditions.



So we close our discussions on the finite difference techniques of solving boundary value

problems and in the next class we shall  consider another technique which is known as a

Shooting technique for solution of boundary value problems, which are linear boundary value

problems


