
Numerical Analysis
Prof R Usha

Department of Mathematics
Indian Institute of Technology Madras

Lecture 18
Numerical Solution of Ordinary Differential Equations (ODE) 1

Good Morning, so in this class we shall consider Numerical solution of Ordinary differential

equations. What are Ordinary Differential Equations? 

(Refer Slide Time: 00:28) 

Suppose say we have a relation which connects an independent variable x with dependent

variable y which depends on this independent variable x and then various order derivatives of

the dependent variable, say I consider derivatives upto order n, so that I have a relation of this

form  where  we  say  that  we  have  an  n  th  order  Ordinary  Differential  Equation  for  the

dependent variable or the unknown y. 

Why is it a n th order differential equation? The highest order derivative that appears in this

relation is the n th order derivative of y with respect to x and so we say that it is an n th order

differential equation. So in this course our focus would be to learn numerical methods for

solving first order differential equations. So they will  be relationships of the form f(x,y,y

prime) equal to 0. 

The highest order derivative is the first order derivative of y with respect to x and so we

would  like  to  develop  numerical  methods  by  means  of  which  we  can  solve  differential



equations of order 1. So you may ask me why do we require numerical solution because you

already have learned certain methods by means of which you can solve first order differential

equations namely if the first order differential equation is an exact differential equation or it is

a variable separable form or it is such that it is a linear Lagrange differential equation or it

may be a non exact first order differential equation. But you can multiply by an appropriate

integrating factor and make it exact and then solve the differential equation.

So you have learned some first order differential equations which can be solved analytically

and you know the methods of solving these differential equations. In practical applications

you may not always get first order differential equations of the form that we have talked bout.

So in such cases we need to have some methods by means of which we have to find the

solution of such differential equations. So in this course we will focus in this topic on the

numerical solution of first order differential equations.

(Refer Slide Time: 03:24)

Usually these first order differential equations will come along with some initial conditions,

namely you will be given y at some initial points say x 0 which is equal to y 0. So this y 0

will be specified or will be given to you. And one can write down this relation explicitly in

the form y prime equal to the function of x,y. So our goal would be to develop numerical

methods by means of which we solve an initial value problem of the form y prime equal to

f(x,y) subject to y(x 0) equal to y(y 0). 

The first question that comes to our mind is that, can we interpret it and understand that what

is differential equation represents and what is the initial condition give us? So we know that



what the solution of this differential equation is some function y is equal to y (x) which is a

smooth function, such that in the xy plane I need to find out what this curve y equal to y(x) is

such that the intial condition tells that it passes through the point x 0 y 0. So I need to find a

function y is equal to y(x) which passes through the point x 0, y 0 at what more is given to us.

We are given that the derivative of y is f(x,y) at any point x , y on that solution.

(Refer Slide Time: 04:58)

So if I take any typical point x,y then the derivative represents the slope of the tangent to the

solution curve y equal to y(x) at that point x,y. So this is given by the slope of the tangent is

given by x,y. So one ca geometrically interpret an initial value problem for the first order

differential equation as determining a curve y equal to y (x) in the x y plane such that it

satisfies the differential equation and the intial condition namely this curve is such that it

passes through the point x 0 , y 0 and has at any point on it the slope of the tangent to be

given by f(x,y). 

So we look for such a solution of this differential equation. So as I said earlier we are going

to look for numerical solution of this  differential  equation.  So it  is  not  possible to get a

continuous solution by the methods that we are going to develop and we want to get the

solution numerically. 
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Essentially we would be getting the solution at a set of discrete points say x 0 the solution is

already known namely the curve passes through the point x 0, y 0. So I will be moving ahead

and determining the solution at a set point say x 1 x 2 x 3 etc say x n where these points are

equally spaced. So that we have a discrete set of values of x and the corresponding values of

y namely at x 0 solution is y 0. 

The methods that we are going to develop for solving this differential equation will enable us

to get the values of y at x 1 which we call as y 1. The value of y at x 2 which is y 2 and so on.

So we will be determining y i at the corresponding x i for i is equal to 1,2,3 etc upto n. Once

we have a discrete set of values of x,y then we already have learned how we can reconstruct

the function with the help of polynomial interpolation.

So we will obtain a smooth curve y is equal to y(x) which is an approximation of the exact

solution of this differential equation so that this approximate solution has the property that it

passes through the point x 0 , y 0 and it has at any point x i, y i its slope to be given by f(x i,y

i). So it is with this goal that we are going to work and develop methods use them and see

how numerical solution of such differential equations can be obtained.

And since we are getting approximate solutions we must be very interested in giving how

much error that has been incurred in obtaining such an approximate solution so we need to

perform error analysis. The next question that would come to your mind is where at all we

come across such differential  equations? What  is  the need for obtaining solution of such



differential equations? In science and Engineering there are several real life situations and

problems which can be modelled as first order differential equations.

So let us take a simple example of a mixing problem and then see how it is ordered into a first

order differential equation and then any problem which occurs in Science or in engineering it

is possible for you to model it in terms of a differential equation depending upon what the

problem is. It may be modelled into a higher order differential equation also, but that higher

order differential equation can be rewritten in terms of a system of first order equations so

that methods that we develop for obtaining solutions of first order equations can be extended

to solving higher order differential equations.

(Refer Slide Time: 09:58)

So let us take a simple example as I said in the case of a mixing problem. So what is a mixing

problem? So I have say I have a tank right? I have a tank full of some salt solution at some

concentration then I pumped into this tank through a pipe another salt solution which has a

different concentration. And at a certain rate I pump this salt solution and then mix the salt

solution within the tank. And then extract out the mixed salt solution when it is very well

mixed in such a way that I extract out the solution at the same rate at which I pump in the

solution.

So the question now is, can I determine the concentration of the salt assuming that the tank is

well mixed. So we have this problem and we would like to model it first and we will show

that the model results in the first order differential equation along with some initial condition.



So that we essentially have modelled this  mixing problem into the solution of first order

differential equation with an initial condition.

So that the modelling of this mixing problem results in an initial value problem for a first

order differential equation. So let us elaborate on this problem and see how we can model. So

please look at the monitor for the problem.

(Refer Slide Time: 12:10)

So let us take a thousand litre tank of water is initially contains 10 Kilograms of dissolved

salts. A pipe brings a salt solutions, concentration is 0.005 kilograms per litre into the tank as

I said at some rate. The rate at which it pumps in is say 2 litre per second. 



(Refer Slide Time: 12:44)

And there is a second pipe here which carries away the access solution. So our problem is to

find out the concentration, let us call it c as a function of say time t of salt assuming that the

tank is well mixed. So our goal is to model this problem. 

(Refer Slide Time: 13:11)

So let us take v to denote the volume of water in the tank since initially it contains 1000 litre,

v is 1000 litres and it is constant. So let m(t) be the mass of the salt that is dissolved in water.

So initially we said that it contains 10 kilograms of salt. so m at time t is equal to 0, so m(0) is

10 kilograms. 



And what is the concentration of salt it is mass per volume so c(t) at any time t will be m by

v. That will be the concentration of salt in the water assuming that the salt is well mixed. 

(Refer Slide Time: 14:00)

And what is do you have a knowledge of concentration at time t equal to 0 ? Yes we have in

1000 litres of water 10 kilograms of salt is dissolved. Initially the tank contains the solution

and therefore c at time t equal to 0 is 10 by 1000 and that is going to be 0.01 kilograms per

litre. So how are we going to model this? Right? What is the principle based on which this

problem can be modelled? 

(Refer Slide Time: 14:40)



So we have to consider the law of conservation of concentration of salt namely the rate of

change of salt in the container is nothing but the rate of inflow of salt into the container minus

the rate of outflow of salt from the container. So this is the law of conservation of salt so the

rate at which the salt content is changed in the container is equal to rate of inflow minus the

rate of outflow. 

(Refer Slide Time: 15:21)

So we make use of this law of conservation of concentration of salt and write down what it

gives us. So let us compute the rate of inflow of salt in kilograms per second. So what is the

rate of inflow of salt?
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It is going to be the rate of inflow if I denote it by r inflow multiplied by the concentration of

salt that is (C in) in the inflow. So the rate of inflow will be C in multiplied by r in, where C

in is known to us, it is given to be 0.005 kilograms per litre that is the concentration of salt in

the inflow.

The rate at which this solution is pumped in is also given which is 2 litres per second. So r in

is the rate of inflow. Now let us write down what is the rate of outflow. So the rate of outflow

will be C out multiplied by r out where C out is nothing but C t which is the concentration of

salt in the outflow and what about r out it is the rate of outflow. What is the problem says the

problem says the rate at which the salt solution is pumped in is the same as the rate at which

mixed salt solution is pumped out. So r out is going to be again 2 litre per second.

(Refer Slide Time: 17:12)

So we now substitute in the law of conservation of salt whatever that is available to us. So

rate of change of salt content in the container is going to be d by dt of m what is it? It is rate

of inflow minus rate of outflow. So it is going to be C in into r in minus c out into r out. So

we use the fact that m(t) is C(t) into v, r out is r in and c out is denoted by C(t). So when we

use that we get dv into dc by dt , v is constant. So d by dt of m where m is C (t) into v will

give us v into dC by dt and that will be equal to C in minus C multiplied by r in
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So  just  arrange  these  terms  you  end  up  with  a  first  order  differential  equation  for  the

concentration C namely dC by dt plus r in by v into C equal to r in by v into C in which is

nothing but a first order differential equation. What is the initial condition? We have already

seen what are we going to determine? What is our unknown?

(Refer Slide Time: 18:44)

Our unknown is C (t), so the initial condition must be specified for C at time t equal to 0. So

we must know what is C(0). 
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So we already have seen that C (0) is given by 0.01 kilograms per litre

(Refer Slide Time: 19:07)

And we have a differential equation which is of first order differential equation of C(t) which

is dC by dt plus r in by v into C equal to r in by v into C in. So we have an initial value

problem. Fortunately we see that this differential equation is of the linear Lagrange form. So

we can analytically solve this differential equation by getting the integrating factor which is e

to the power of r in into t divided by v.



So the solution immediately comes out to be C(t)  equal to C in plus k into e power minus r in

into t by v where k is a constant which is determined using the initial condition which is

given for C(t) equal to 0. Then we immediately obtain the solution as given there and C is in

kilograms per litre and t is in seconds. So we observe that this simple mixing problem which

makes use of the law of conservation of salt within the container results in an intial value

problem for a first order differential equations along with the initial condition. 

And  therefore  there  are  many  such  practical  situations  and  problems  in  Science  and

Engineering  which  can  be  modelled  in  terms  of  first  order  or  higher  order  differential

equations which can be rewritten in terms of a system of first order equations which cannot

be solved analytically by the available known techniques or the methods that we already have

learned.

And in such cases we need to obtain a numerical solution of such differential equation by

which we mean we require solution at a set of discrete equally spaced points. So that we end

up with  a  table  of  values  for  the  independent  variable  and the  correspondent  dependent

variable which we use to reconstruct the function y as a function of x then we end up with a

solution of the initial value problem of the first order equation.

So we would like to now develop such methods but before going over to the development of

such methods we require some preliminary results on the existence and the uniqueness of

solution of such first order differential equations. And at what conditions on the function f we

may  get  a  solution  which  is  unique  and  which  exists  and  where  does  it  exist  all  these

questions have to be answered. So we shall look into some preliminary results on the theory

of ordinary differential equations. 

And then move on to the development of the numerical methods by means of which we can

solve differential equation. 
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I have referred to the two books by David Kincaid and Cheney on Numerical Analysis and

Burden and Fairs on Numerical Analysis for these preliminary results. 

(Refer Slide Time: 22:50)

So let us first take an example. So please watch the monitor for the results that I am going to

present. So consider a first order differential equation dy by dx is y tan (x plus 3); y( minus 3)

is 1. So we want to determine y on an interval containing the initial point x 0 which is minus

3.



Please see the initial condition is y(minus 3) is 1, so the intial point x 0 is minus 3. So we

require a solution of this differential equation passing through the point minus 3 , 1. So we

want to determine y on an interval which encloses this initial point x 0 which is minus 3 and

it is obvious that y equal to c can take x plus 3 as a solution. You just take the derivative of

sec(x plus 3) you immediately get dy by dx to be given by y into tan (x plus 3) and the

condition y(minus 3) equal to 1 is satisfied. 

(Refer Slide Time: 24:10)

So this is an analytical solution we see that sec(x plus 3) is a solution and sec(x ) become

infinite at x is equal to plus or minus Pi by 2. So our solution sec (x plus 3) is valid only for

those values of x which satisfy the condition that x plus 3 lies between minus Pi by 2 and plus

Pi by 2. So the solution is y equal to sec( x plus 3) such that x plus 3 lies between minus Pi by

2 to plus Pi by 2. And in this case we have been able to obtain an analytical solution. 



(Refer Slide Time: 24:50)

But typically the solutions are not available for initial value problems of the form dy by dx is

equal to f(x,y) and y(x 0) equal to y 0. So we have to adopt numerical techniques of which

these differential equations can be solved. 

(Refer Slide Time: 25:11)

There  are  two approaches  to  this.  The first  approach is  1  where  you simplify  the  given

differential equation so that you will be able to analytically solve the simplified equation and

take that as an approximate solution of the original problem. That is one approach, the second



approach is try to develop and use the methods for approximating the solution of the original

problem itself.

These are the two possibilities and we would like to use the second approach namely we want

to now develop numerical methods and use those numerical methods in getting approximate

solution of the original initial value problem that is given to us. Why are we very particular

about the second approach? 

The reason is that it is going to be an approximate solution that is one and secondly it would

be possible for us to specify some information about the error that is incurred in getting this

approximate solution which has been obtained through the numerical method that we have

developed. So it is for this reason that we would like to approach through the second method.

(Refer Slide Time: 26:42)

So as I already mentioned keep in mind that the methods that we are going to develop will

not  yield  as  continuous  approximations  to  the  solution  of  initial  value  problems.  These

approximations are going to be obtained at a certain set of specified equally spaced points. So

as  I  remarked  earlier  we require  some definitions  and  results  on  the  theory  of  ordinary

differential equations. 
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So let us look into those details. So first question that we want to post is this. Does every

initial value problem of the form dy by dx is equal to f(x,y) with y(x 0) equal to y 0 possess

such a solution? Does it have a solution? That is the first question. The Answer is no we have

to have some conditions and assumptions that will have to be satisfied by f so that a solution

of this initial value problem may be shown to exist in a neighbourhood of the initial point x 0.

(Refer Slide Time: 28:09)

So let us see what this following example gives us. So consider this initial value problem dy

by dx is equal to 1 plus y square y(0) is 0. so y(0) is 0 that is an initial condition. So look at



the function f(x,y) what is it ? It is 1 plus y square. So y prime (0) is 1 plus y square(0) which

is 1 plus 0 so which is 1. So y prime (0) is 1 so the slope is positive. What does it mean? y(x)

is increasing where near x is equal to 0.

And 1 plus y square is increasing that is y prime equal to 1 plus y square is increasing so y

prime is increasing. What is it that we have shown from the information which is given to us

namely the intial value problem we are able to see that both y and y prime are increasing and

y prime is 1 plus y square so we can expect that at some finite x there is going to be no

solution because both y and y prime are increasing.

So there will be some finite x at which y(x) will become infinity, infact can you tell where it

becomes infinity in fact you can solve the equation dy by dx is 1 plus y square. So it is of the

variable separable form, so dy by 1 plus y square is dx. So tan inverse y will be equal to x

plus a constant used is initial condition so you immediately observe that `x is equal to tan

inverse y or y is equal to tan x or x is equal to Pi by 2 your analytical solution is such that it is

going to become infinite.

(Refer Slide Time: 30:08)

So you observe that you have from this example that your solution is such that at some point

x is equal to Pi by 2 it becomes infinite,  it does not exist. So let us keep this example in mind

and see what does the next result tell us? It says or it gives us the condition under which the

solution of an initial value problem exists in a neighbourhood of that initial point. So it says if

dy by dx is equal to f(x,y) is first order differential equation given to you subject to an initial



condition y(x 0) equal to y 0, then if that function f(x y) is continuous in a rectangle capital R

which is centred at the point x 0 , y 0. So how are you going to describe this rectangle R, this

rectangle R is the set of all points x,y such that mod x minus x 0 is less than or equal to alpha

and mod y minus y 0 is less than or equal to beta. 

So the centre of the rectangles x 0 , y 0. What is this x 0, y 0? Our initial condition says y (x

0) equal to y 0 so the centre is this point x 0 , y 0 at which the initial condition will be

specified. So there result says if f is continuous in this rectangle then the initial value problem

has a solution y(x). What does it mean? It means the solution exists where for mod x minus x

0 less than or equal to minimum of alpha, beta by m that is a solution exists in an interval

surrounding this point x 0 that is a solution exists in a neighbourhood of the point x 0 at

which the initial condition is specified.

What is capital M? M is the maximum of absolute value of f (x,y) in the rectangle R. so what

is the condition of that f has to satisfy? f has to be continuous at rectangle R. Then a solution

exists for this initial value problem in an interval which is a neighbourhood of the initial point

x 0. So let us consider an example and try to understand the result given in the theorem.

(Refer Slide Time: 32:48)

So if you take dy by dx is equal to (x plus sin y) the whole square which y(0) equal to 3 we

will show that this initial value problem has a solution on the interval (minus 1 to 1) that

encloses this initial point x 0 which is 0. So what is f, f is (x plus sin y) the whole square,

what is (x 0, y 0 ) (0,3)? And what is the rectangle mod x minus x 0) so mod  x minus 0 less



than or equal to some alpha, mod y minus y 0 that is mod y minus 3 is less than or equal to

beta that is the rectangle having centre at (0,3)

So let us see what is modulus of (x,y)? f(x y) is (x plus sin y) the whole square, so since mod

x is less than or equal to alpha for all xy in this rectangle modulus of f(x,y) is going to be less

than or equal to (alpha plus 1) the whole square. We have call this or denoted this by capital

M. And what is it that we want? We want the minimum of alpha , gamma , beta by m to be

greater than or equal to 1 because what is the problem say show that the solution exists in an

interval minus 1 to 1. So we want minimum of alpha, beta by m to be greater than or equal to

1.

So we can let alpha to be equal to 1 and since capital M is alpha plus 1 the whole square

which is 4 in this rectangle R, minimum of alpha, beta by 4 is greater than or equal to 1 can

be satisfied by taking beta to be greater than or equal to 4. So we have been able to show by

applying the existence theorem to this example.

 Since f is continuous in that example and we have been able to show that there is an interval

in a neighbourhood of x is equal to 0. Namely minus 1 to 1 the condition is satisfied namely

what does that condition say, the theorem says the initial value problem has a solution y(x)

for mod x minus x 0 less than or equal to minimum of alpha, beta by m.

So in our case y(0) equal to 3 so it has a solution y(x) for mod x minus 0 less than or equal to

minimum of 1, beta by m where beta is greater than or equal to 4 and M is equal to 4.Namely

the solution exists on the interval mod x which is less than or equal to minimum of alpha,

beta by M which is 1. Namely the solution exists in an interval of the form minus 1 to 1

which encloses this initial point x 0 is equal to 0.

So what is the condition the function f(x,y) must be continuous in that rectangle R which is

centred at the point x 0 , y 0.So we note that even if the function f is continuous the solution

to an intial value problem need not be unique isn't it we only showed using the result of the

first  theorem  that  solution  to  an  initial  value  problem  exists  provided  x  satisfies  some

conditions namely f is continuous in a rectangle R centred at the point x 0, y 0. 

And in that case a solution exists in an interval enclosing the origin. Is the solution unique? is

the next question to be answered. So even if  f is continuous inside that rectangle centred at  x

0 , y 0 it may happen that the solution need not be unique. So let us see an example. 
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Consider dy by dx equal to y power 2 by 3 with y(0) equal to 0. So we observe immediately

that y(x) equal to 0 is one of the solutions which is a trivial solution. In addition y(x) is equal

to x cube by 27 is another solution y just verify by taking the derivative of y dy by dx will

come out to be 3x square by 27 that is x square by 9 which is nothing but y power 2  by 3. So

the second solution that I have written down also satisfies the differential equation, so we

have both y(x) is equal to 0 y(x) is equal to x cube by 27 to satisfy this initial value problem.

(Refer Slide Time: 38:08)

So in order that this intial value problem has a unique solution in a neighbour hood of x is

equal to x 0 it is necessary that f satisfies some more conditions, so that is given by the next



theorem so let us look into those conditions. So if f and f y are continuous in the rectangle

which is centred at the point x 0, y 0 then the initial value problem has a unique solution in

the interval mod x minus x 0 less than minimum of alpha, beta by m.

 So both f and the partial derivative of f with respect to y must be continuous in the rectangle

centred at x 0, y 0 then the initial value problem has a unique solutions. So initial value

problem  has a solution and that solution is unique where in an interval which is such that it

encloses the initial point x 0.

(Refer Slide Time: 39:25)

So it may also happen that the interval on the x axis in which the solution is asserted to exist

in the previous two theorems may be such that it is smaller than the base of the rectangle R in

which we have defined the function f(x,y).  So we have a  next  theorem which gives the

existence and uniqueness of solution of an initial value problem on an interval say of the form

a,b which is a closed interval.

So the result says if f is continuous in the strip a less than or equal to x less than or equal to b

and minus infinity less than y less than infinity, so if you consider a strip bounded by x is

equal to a and x is equal to b and y runs from minus infinity to infinity. And if f is continuous

in this strip and in addition f satisfies an inequality modulus of f(x,y 1) minus f(x , y 2) is less

than or equal to l into mod y 1 minus y 2. If this condition is also satisfied then the initial

value problem for the first order equation has a unique solution in the entire interval [a,b].



So this theorem asserts the existence and uniqueness of a solution of an initial value problem

in an interval [a,b] and says the function f must be continuous in the strip and it should satisfy

this inequality. 
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This inequality is called a Lipchitz condition in the second variable y. So function f must be

continuous inside the rectangle centred at x 0, y 0 and f might satisfy a Lipchitz condition in

the second variable then theorem asserts that the initial value problem has the unique solution

in an interval for the form a to b. Just observe that the initial condition is specified at the left

end point a of the interval a,b y(a) is y 0.
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So let us consider an example. If suppose I have an initial value problem dy by dx is equal to

f(x,y) and y(a) is given to be y 0 where f(x,y) is f mod y. And let the rectangle R be the set of

all x,y such that x lies between 1 and 2 and y lies between minus 3 and 4. So the function is

continuous in this rectangle that is clear 

We should see whether f satisfies a Lipschitz condition in the second variable y. So let us

consider two points x 1 y 1 and x 2 y 2 belonging to the rectangle. So let us consider the

absolute value of the difference between f(x, y 1) and f(x, y 2). We know that f(x , y) is x mod

y. So the right hand side will be the absolute value of x mod y 1 minus x mod y 2 which is

mod x into modulus of mod y 1 minus mod y 2 and that would be less than or equal to twice

mod y 1 minus y 2 because x is less than or equal to 2 inside that rectangle 

So we observe that f satisfies a Lipchitz condition in the second variable y on the rectangle R

and f is also continuous. So by the conditions of the theorem and the initial value problem of

the form dy by dx is equal to f(x,y) subject to the condition y (1) equal to y 0 will have a

unique solution in an interval that encloses the initial point a which is 1. 
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Let us now consider this definition and give another result through which again the existence

and uniqueness of solution of an initial value problem can be guaranteed to exist.  So we

define a set D as subset of R2 to be convex. If whenever x 1 y 1 and x 2 y 2 belong to the set

and lambda ranges between 0 and 1 the point 1 minus lambda x 1 plus lambda x 2, 1 minus

lambda y 1 plus y 2 also belongs to d. 

What does that mean? Whenever two points x 1 y 1 x 2 y 2 lie inside the a line segment

joining x 1 y 1, x 2 y 2 is considered then every point on this line segment joining x 1 y 1 x 2

y 2 also will lie within D. 
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So just look at this figure that has been given. So take any two points x 1 y 1 x 2 y 2 draw a

line segment if D is such that a line segment lies within D then the set is said to be convex.

In the other figure that does not happen a part of the line segment lies outside the set D so this

set is not a convex set.
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So consider a set which is convex. In what follows our discussion is based on such a set

which is a convex set. So let us present this result. If suppose the function f(x,y) that appears

on the right hand side of a first order equation dy by dx is equal to f(x,y) is defined on a

convex set D which is a subset of R 2. If you can find a constant L which is a positive such



that modulus of partial derivative of f with respect to y is less than or equal to this constant L

for every xy in that convex set D then it means that f satisfies the Lipchitz condition on the

set D in the second variable y with a Lipchitz constant L. 

So given a function f(x,y) if defined on a set D you can check whether mod f y is less than or

equal to L for all x in D namely you should be able to find out a capital L positive such that

for all xy in D the partial derivative of f with respect to y in absolute value should be less than

or  equal  to  capital  L.  If  this  condition  is  satisfied  then  the  theorem guarantees  that  the

function f satisfies the Lipchitz condition in the second variable y with a Lipchitz constant L.
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So let us consider an example. Say dy by dx is 1 plus x into sin x y for x lying between 0 and

2 with y(0) equal to 0. I would like to check whether the function f(x,y) satisfies a Lipchitz

condition. So I would like to find what is f y suppose I hold x constant and apply mean value

theorem to this function f(x,y) then we see that whenever y 1 is less than y 2 we can psi

belonging to the interval y 1 to y 2 such that f(x, y 1) minus f(x, y 2) by y 2 minus  y 1 is the

partial derivative of f with respect to y evaluated at x , psi where psi lies between y 1 and y 2.

So if you rewrite that then you get modulus of f(x , y 2) minus f(x , y 1) is mod y 2 minus y 1

into mod x square into cos (x psi). But that is less than or equal to 4 times mod y 1 minus y 2

because your x is such that x lies between 0 and 2. So what is it that you have shown? You

have shown that f satisfies a Lipchitz condition with Lipchitz constant equal to 4.

You have been able to show that there exists a constant L which is equal to 4 such that f

satisfies a Lipchitz condition what does that mean? If f is continuous on that strip then the

initial value problem has a unique solution. So let us see what is f? F is 1 plus x sin (xy) so it

is a continuous function on the interval 0 less than or equal to x less than or equal to 2 and

minus infinity less than y less than infinity and therefore the initial value problems has a

unique solution, so in our discussion.

So far we have been able to understand to some extents the condition under which the initial

value problem will have a unique solution there is one more thing that has to be addressed

namely what happens if  I  give small  changes  to the initial  value problem and the initial



condition. Will there be large deviations in the resulting solution essentially we are checking

up with our solution remains stable. 

Namely will the small changes in the problem as well as the initial condition lead to small

changes in the resulting solution of the initial value problem or in which case we say that we

have a stable solution or does it lead to large deviations in which case we cannot rely upon

the numerical method that we are going to employ to get the solution of the initial value

problem. So we shall address this issue in the next class.


