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Welcome back in the last video we have seen that how to solve semi wave equation in a semi-

infinite domain that is 0 to infinity when the boundary condition is fixed that is u at 0, t is 0,

okay. So with the general initial data we have solved we actually constructed and the solution

and we have seen a new approach, so in a different approach not by extending as on a full

domain and make use of the D'Alembert's solution and a new approach without doing without

making use of the D'Alembert's solution we have seen how to construct a solution in a semi-

infinite domain.
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Today we will see this video we will see how to construct the same similar thing when the

boundary condition is different that is free edge free edge boundary conditions.  So let  us

write the problem so u x u tt minus c square u xx is 0 this is a wave equation for x positive

and t positive the semi-infinite domain. Now initial data is as usual u x, 0 is f x, u t at x equal

to 0 is g x is given this is your initial data, okay.

And the boundary data is that is you have only one boundary at 0 x equal to 0 and this is

infinity, okay. So your this is t at x equal to 0 that means on this boundary you are giving that

is free edge that means the slope of that is 0 at x equal to 0. So u x at 0, t equal to 0 for all



times that is the meaning, okay so u x 0, t is 0 is 0 boundary condition again. So we do not

really extend it as a even function here like we did earlier.

So what we do is we take the general solution of the wave equation that we already know the

general solution general solution of wave equation is u x, t is let us say some c 1 of x minus ct

plus c 2 of x plus ct, where c 1 and c 2 are arbitrary c 1, c 2 are arbitrary functions. And if you

apply the initial data you finally see that like earlier you can actually find what is your c 1 x

and what is your c 2 x, okay.
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So I will just pick it up from earlier what we had derived after applying initial data so by

doing this you see one is c 1 you will get minus K by 2 so K is an arbitrary constant. So you

see that half f x plus 1 by 2c integral x not to x g of s ds minus K by 2 as your c 1 x, okay c 1



x you have this where K is arbitrary constant where K is actually K is actually c 1 at x not

minus c 2 at x not. So that is some arbitrary constant. So another one is c 2 is half f x plus 1

by 2c x not to x g of s ds plus K by 2, this is how you will get, okay. This is what we have

seen even in  the  earlier  example  so once  you use this  and you can  see that  the  general

solution is this.

Now again x minus ct can be negative for larger times so you need c 1 a negative function

that I can get it from the boundary condition, okay. So that boundary condition so you can see

that where K is where K is actually, so what is K? K is c 2 at x not minus c 1 c2 at x not

minus c 1 at x not. Let me apply the boundary condition boundary condition fixed get you

what is your c 1 for the negative values.

So u x at 0, t equal to 0 the boundary condition implies c 1 minus ct c 1 dash, okay so how do

I do this one this is c 1 this this function you have to differentiate with respect to this is like

dc1 by d x minus ct into d x minus ct divided by dx that is my dc1 by dou c 1 by dou x, okay

you can dou both are all are dou because two functions are involved, okay this is what is my

dou u by dou x the first term I did that is what I get. Now you see that dou c 2 by dou x minus

ct and into dou of x plus x plus ct divided by dou x this is plus okay. Now this whole thing

you are putting at x equal to 0, okay this whole thing at x equal to 0, okay this is equal to 0.
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So this is exactly whatever is the left hand side is my u x at 0, t so this gives me c 1 dash of

minus ct, okay when you put x equal to 0, dc1 by d of minus ct, okay of c 1 c 1 of minus ct,

okay c 1 of x minus ct when you put x equal to 0 minus ct. So this is exactly c 1 dash of

minus ct plus c 2 dash of ct equal to 0 this is what you will get. Now if you integrate if you

simply integrate how do I integrate like earlier, if you simply integrate from so see that t is t

is positive so implies ct is also positive, okay you can consider x not equal to 0 this is you

have a domain is from 0 to infinity, okay.

So you can think of so this is only taking positive values, okay c 1 of minus ct minus ct, ct is

positive,  okay this  is  that  you can think of ct  as l  so this  is  your l,  l  is  always positive

including 0, okay. So so you can integrate this so first you write this c 1 dash of minus x plus

c 2 dash of plus x equal to 0. In a notation I am simply replacing x equal to where x is ct,

which is because ct is positive this x is also positive, okay so that is what I mean so because it

is positive so x is positive you can integrate this from x not to x not to x that is now I can take

I can fix my x not as 0, okay so I can fix my x not as 0, 0 to x if I differentiate I can integrate

c 1 dash of minus x plus c 2 dash of x into dx, okay equal to 0 right so integration anyway 0,

okay.

So you have what you have is this is integral 0 to x d ds of or d dx of this is c 2 of x minus c 1

of minus x, if you differentiate this is exactly you get the integrant c 2 dash I have minus

minus plus c 1 dash of x, okay to differentiate this c 1 of minus x you get minus of c 1 dash of

minus x, so minus minus plus you will have this this is dx equal to 0. Now this is at x that is c

2 x minus c 1 of minus x equal to minus of at 0 so that is c 2 of 0 minus c 1 of minus x minus

0 that is 0, okay this is what is my this one.
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So what is this one this is equal to now when you are applying the initial conditions you

integrate it from x not to x there also you have a domain is from 0 to infinity x is from 0 to

infinity you can choose your x not as 0, if you do that your K will be simply c 2 at 0 minus c

1 at 0. So C 2 is 0 c minus c 1 is nothing but your K same K. So this will give me c 1 at

minus x, x is positive, okay this is equal to c 2 x minus K, this is for x positive, okay.

So this means c 1 x equal to c 2 of minus x minus K for x negative. So this this is what I got.

So I I now find what I want c 1 function for the negative values, I know what is my c 2, c 2 is

this I make use of this to write for the negative values, okay. So what I want is c 1 at x minus

ct so this is where when I will get it this is (())(10:38) I know that when I require u of x, t for

x is between 0 to ct that is where c 1 of x minus ct in the general solution u have a general



solution here okay so that can be negative so that negative function is actually equal to in this

when x is between 0 to ct c 1 of x minus ct x minus ct is negative like here.

And this is nothing but c 2 of minus x what is c 2, c 2 is half f x that is half f of minus x f of

minus x means that is c 2 x c 2 x is minus x is now x minus ct. So you have ct minus x, okay

then plus 1 by 2c integral 0 to x g s ds 0 to x is how to write minus x that is ct minus x, x

minus ct minus of that is ct minus x, how g s ds, okay.
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And this one if you add with c 2 c 2 of x plus ct, c 2 of x plus ct is simply half of f of x plus ct

plus 1 by 2c integral 0 to x plus ct g of s ds so this sum is nothing but so this is what is x

minus ct so this is from 0 less than x less than ct, okay. So for the same x is between 0 to less



than ct your c 2 is anyway whatever may be x plus ct is anyway still positive so you have to

use the same ct.

So this implies u of x, t when x is between 0 to x is between 0 to ct you have you have this

summation that summation is half of f of ct minus x plus f of x plus ct and now this one you

can simply add add together and of course c 1 have minus K, okay so I miss something here

so you have a minus K, right so you have a minus K here and here c 2 is plus K by so sorry c

1 so you are replacing c 2 so that is plus K by 2 that is plus K by 2 what is that I am missing

something so c 2.

So this is you have what you have written is c 1 this equal to c 2 of minus x minus K minus K

and what you have is what I have missed is c 2 is plus K by 2 is missing, so plus K by 2 is

also there, okay. So you have a c 2 of minus K you have plus K by 2 and you have a minus K

here, okay. So together this is minus K by 2 and c 2 is you have here plus K by 2 and if you

add this two these two gets cancel, okay this is what it means this is for x less than ct.

So what you have is when you add it what you are left with is simply this into 0 to ct minus x

g s ds plus 0 to x plus ct g s ds for this domain. What happens when x is greater than ct both c

1 and c 2 both are positive c 1 x minus ct x plus ct both are positive you simply take from

here their addition. So this K by 2 K by 2 goes and simply have usual D'Alembert's solution

for c greater than ct what you have is simply D'Alembert's solution that is half times f of x

minus ct plus f of x plus ct plus 1 by 2c integral x minus ct to x plus ct g s ds.

So this is your this is how you constructed your solution when your boundary condition is

free free edge boundary condition, okay at x equal to 0 the string is like a free so you have the

slope is 0.
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If u want this to be a solution if u is a solution u of x, t is a solution is the solution because is

a unique solution is  the solution then again it  has to satisfy wave equation so f  is twice

differentiable f, f dash, f double dash and g g is g, g dash or continuous exist and continuous

or continuous functions, okay and immediately by making use of u continuity u is continuous

gives gives something okay u or u x u x or u t u t or continuous if these are all continuous in

fact u xx also u xx, u tt all continuity will give you finally f dash of 0 is 0, g dash of 0 is 0.

So these are  the conditions  we used by extending the domain  0 to  infinity  to  as a  even

extension you have taken so you extended it the domain to minus infinity and made use of

D'Alembert's solution for the full real line. In that case when you extend as an even function

these are satisfied automatically.

So by the initial data and here also by just substituting this and into the if you this has to be a

solution necessarily the initial data that is by f and g functions should satisfy this, okay along

with  this  differentiability  and  continuity  of  this  functions  f  and g.  This  is  how you can

construct your solution when the boundary data is given like this when the boundary data is

free edge and the boundary data is one of this other edge, you approach approach is same you

first have by apply the initial data get your c 1 x and c 2 x.

Now because of u 0, t  because x minus ct because your x is positive x minus ct  can be

negative so apply the boundary conditions either this or this and try to get your c 1 for next

values of x next ordinate, okay c 1 of x when x is negative that is what I have to find out that

you can get it from this one just by applying to the general solution here of the wave equation

you can get that because when you put x equal to 0 what you are getting c 1 of minus ct.

So obviously you are getting you are able to get c 1 of minus ct that you call it some x, so you

have a negative values of x you can get your function c 1 and that you substitute that you can

get  in  terms  of  c  2  from the  boundary  condition  that  make  use  of  that  and finally  you

substitute into the c 1 and c 2 you will get your solution.
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In the in this domain that is the only thing extra otherwise other part is simply D'Alembert's

solution, okay. So this is how you can apply this approach this is the most general approach

so that you can apply you can even use for other boundary conditions. So this is how so far

we have seen how to solve wave equation with the initial  data in the full  domain minus

infinity infinity or a wave equation with initial data and on a semi-infinite domain that is 0 to

infinity. So that you have a boundary on the boundary you can give any boundary data, okay.

So any type of boundary data whatever is given you can actually construct your solution in

this fashion, okay.
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So now let us move on to move on to wave equation solutions what are the problems we can

have if you have a finite domain. So that means consider a finite string if you have a finite

string vibrating string so initial data is like u so it is the displacement of the string is given

initially initially at t equal to 0 you can have u at x, 0 equal to f x that is given x is between a

to b, a to b is a finite string, okay.

So your finite string is string of length b minus a that is so let us say at x equal to a is one end

and x equal to b is other end and other initial data is u t at x equal to 0 is g of x that is the

slope of this string is at every point is given as not not slope sorry this is actually the vibrate

so initially your displacement of the string is velocity of the string at initial time at t equal to



0 is given as g of x that you can show graphically so these are given this is what is the initial

data.

Boundary data now you have to fix because you have a boundary here a and b so that is u at a

for all times u at b for all times you have to provide this boundary data because you have a

boundary involved here, okay. So because you have this boundary involved so you have to

provide this boundary data for the solution so that is how you make the problem well defined,

okay.

So how do I what do I do so you can fix physically you can fix your string as fixed string or

allow it to be free just like you have seen earlier. So if you make this these two boundary

condition you can give 0 or boundary conditions you can change it so you can have u you can

fix it one end you fix it, one end I can fix it, other end I can simply take the I can make it to

be free that is x derivative at b, t equal to 0.

So this is like one end fixed is like fixed fixed free okay, fixed free, this is fixed fixed fixed,

okay both end fixed. Like that you can have a combination u x at a, t is also 0, u x b, t is also

0, so this is like free free free-free, free-free, okay at both the ends. So like this you can have

so a string is satisfying the wave equation so you can have you can now write the boundary

value problem initial boundary value problem for wave equation in the domain in the finite

domain rather, okay in the finite domain one dimensional wave equation in the finite domain.

So you have u x u tt minus c square u xx equal to 0, x is now not full real line not semi-

infinite so it is simply from a to b you have a to b and t is positive, okay. So these are this is

your domain this is your domain now give the initial data that what you have there so you

have u at x, 0 like earlier f x, u t at x equal to 0 velocity of the string at x equal to 0 this is

your initial conditions, okay.

Now give the boundary data or the boundary conditions you can give one of them I start with

this fixed fixed-fixed string that is u at a, t equal to 0, u at b, t equal to 0. So this is the

problem now, how do I solve how do I find my u of x, t for all t. So this is initially you know

something boundary data you know. So the question is how to find how to solve, how to find

the  displacement  of  the  string  for  all  times  for  every  for  all  t  positive  and  for  every  x

everywhere in the all along the string how to find the displacement this is the question, okay.

So  this  is  where  we  use  we  can  actually  use  something  similar  arguments  like  earlier

arguments but let us what because we have learned ordinary differential equations we try to



when we used we have learned Sturm Liouville theory, we try to extract Sturm Liouville

theory, okay.
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So when the special domain one of the special domain is finite, okay you have a t t and x

variables t is positive, it is a infinite domain but x domain is finite, okay you can see this

when you have such domains and you can actually extract Sturm Liouville value problem out

of  this  PDE by a  technique  called  separation  of  variables,  if  you apply  if  you look  for

solutions so this is called separation of variables variable technique whether to find u x, t

okay. So this is what we do to find this u of x, t, okay.

So separation of variables I am applying to just to find the solution of the wave equation let

us  see,  okay. So wave equation  is  homogeneous  equation  so you have  a  0 is  actually  a



solution because look at the equation 0 also satisfies if you replace u of x, t as 0, if you take u

of x, t as 0 0 satisfies, okay. So we are looking for nonzero solution look for let u of x, t be

some X of x I where a separation I separate this variables X of x into T of t which is nonzero,

okay as a solution as a solution of solution of the wave equation.

You look for in this form look for solution in this form, okay so if you do that substitute that

into the this form substitute into the equation if you do that what you get is u tt that means u tt

means now this is X of x is only function of x and function of t. So what you get is X of x T

double dash of t with respect to this is like d square t by dt square minus c square that is

anyway constant and now here u xx that is x double dash of x T of t equal to 0. So if this is

how you look for a solution this is what it becomes, okay.

Then this implies you can write (X of) X double dash of x, okay by X of x equal to okay you

can make it equal you take it to the right hand side and divide with because this is nonzero

you can divide both sides with X of x and T of t, okay we can simply divide because it is

nonzero that is how we are looking for solution. So if you do that you get this the one side,

okay if you first time so let us do this so X of x T double dash of t equal to c square X dash of

x T of t. You divide now both sides with X of x and T of t because this is nonzero, okay this T

of t goes, X of x goes.

So what you are left is I will write like this X dash of x divided by X of x equal to T dash of t

divided by c square T of t, okay this is what you get. So now the variables are separated X of

x and T of t, this one side is functions of x, other side is functions of t. So if you have two

independent variables x and t, one function is same left one side is function of x, another side

is function of t and x and t are independent variables then it has to be constant so this is some

constant call this lambda, okay it has to be constant that is call it you call it lambda is a

parameter.
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So this implies X double dash of x minus X of x minus lambda into X of x equal to 0, okay

this is one problem for X of x, other one is T double dash of t minus lambda c square T of t

equal to 0 that is another problem for T T of t. Now we consider this one, okay now your u of

x, t is product of x and t so apply the boundary conditions what you have the boundary u at a,

t is 0.

Boundary conditions give u at a, t is 0 gives this means X of a T of t has to be 0, T of t cannot

be 0, okay because it is a function of t. If this is 0 then this is 0 u of but we know that we

started with nonzero solution. So this implies X at a equal to 0, so you got a boundary you

have a boundary condition for x this is what is your domain for x, x is between a to b when

you are separating your write like that and here t is positive.



Now for the this problem you have found a boundary data x at a. Similarly you have u at b, t

equal to 0 will give me X at b T t is 0 so this because T t cannot be 0, so that is X at b equal to

0, okay. So this is your boundary data boundary conditions will give you if you apply the

boundary conditions they give you that x of a equal to 0, x of b equal to 0 this is the Sturm-

Liouville problem.
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So  now  we  have  extracted  Sturm-Liouville  problem  a  system  a  system  regular  Sturm-

Liouville system you extract it what you have is mostly regular usual problems but when you

are working in the Cartesian coordinates you always extract regular Sturm-Liouville system,

okay when you are working on the problems for the Laplace wave equation or some other

equation  for  the  equations  when  you  are  working  on  a  circular  domains  for  example

cylindrical coordinates, polar coordinates you may end up you may end up getting let us say

legendary equation that is  not regular Sturm-Liouville  problem so that is  singular  Sturm-

Liouville system so that is what you get, okay.

So here mostly if you working in the semi if you are working on the Cartesian coordinate

system you will always extract regular Sturm-Liouville. So you have this problem ordinary

differential equations X of x minus lambda is the arbitrary number so this is the parameter X

of x equal to 0, in the domain x is a to b and X at a equal to 0, X at b equal to 0. So this is

your Sturm-Liouville problem regular Sturm-Liouville problem so regular type, okay okay.

So you know how to find eigenvalues and eigenvectors, eigenvectors are all those for those

values  of  lambda for  which  you have  nonzero  solutions  satisfying  these  boundary  value

conditions,  boundary  data  they  eigenfunctions  and  corresponding  lambda  values  or

eigenvalues. So you find this eigenvalues and eigenfunctions and then you corresponding to

those eigenvalues you come here for pickup this problem and those eigenvalues you have you

can solve this second order equation and get the solution. And once you know this t and X of

x you go on substitute into this x and t, I will give you a solution, kind of solution with some

constant, okay.



So we will see that so first get the eigenvalues and eigenfunctions here, so because we have

done earlier so eigenvalues and eigenfunctions. So because I have done earlier so I am just

giving you directly so here (30) already so we can I can give you directly eigenvalues and

eigenfunctions so anyway so may be because of time so we cannot finish in this video so we

will  have a we will try to find the eigenvalues and eigenfunctions and once you get this

eigenvalues and eigenfunctions so you will see that you will have a lambda n’s you can get

and you have some call this some f n so eigenvalues what did I use we use Phi n’s okay so we

have Phi n of x this is what we used.

So try to get this eigenvalues and eigenfunctions. Now substitute this lambda n's into this

corresponding to if you put it in this ODE we will get we will try to get your (T n of x) T n of

t for each n, okay discrete number of eigenvalues you will get you will get discrete number of

eigenfunctions you will get, okay as your X n of x eigenfunctions or solutions you will get

these are these are your solutions, okay let us call this only X n of x as eigenfunctions, okay.

Here T n of t they are corresponding solutions of other ODE which we have here. So because

for these are nonzero eigenvalues their product for each n you have X n of x T n of t which is

nonzero which is a solution because X n of x is nonzero and correspondingly you have T n of

t is also nonzero if you solve it, okay. So this solution this is a each is a solution for each n for

each n this is a solution, okay.
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And then because n is discrete you take a make a sum may be n is may be sometimes 0 to

infinity or 1 to infinity whatever, okay let us say from 0 to infinity on a finite sum let us not



write here because we have not seen what are eigenvalues.  So you make a sum over the

discrete index n X n x T n of t, this sum you call it u of x, t as okay this you call it this is the

general solution this is the general solution because this if this is a for each n this is a product

is a solution any constant c n is also a solution, okay or may be that constant so this arbitrary

constant may be involved for each n inside here so you have arbitrary constant inside here,

okay for each n you have arbitrary constant their  sum actually  one can show the sum is

uniformly convergent so that you can differentiate term by term if you differentiate u x if you

want you simply differentiate term by term that is how you can get u x, u xx all that, okay.

So finite sum if it is a finite sum actually you can differentiate because all are differentiable

function we put it into the wave equation and try to this is actually satisfying because each

term each term is satisfying the wave equation the linear super position of finite terms is also

a solution of the wave equation because it is a linear linear equation you are using here super

position principles these are all the solutions you are making a super position sum of finite

number of them, okay are also solution.

But if you do if you take this infinite sum the sum infinite one can actually show that but we

do not show here one can actually show that this series is uniformly convergent in both the

variables x and t that means we just think of imagine that uniformly convergent series means

you simply can do term by term differentiation, term by term integration, okay basically what

we need term by term differentiation.

So it is uniformly convergent that makes that means the finite sum that infinite sum it makes

sense and actually you can if you want the derivative of that full sum is actually is equal to

that sum of you just term by term differentiation you can do and finally when you substitute

that also satisfies wave equation. So if you make this super position, okay you assume that

this is a solution because because it is uniformly convergent you can do that is a solution you

look for solution in this form so far we have not used initial data, okay. So once you see that

this is the solution that satisfies the wave equation and the boundary data so far.

Now on this general solution you apply the initial data and get the arbitrary constant involved

in this T n that means it is involved here, okay that is where we use the dot product of this

eigenfunctions so the dot product of the eigenfunctions you can use here Phi n,  Phi m, okay

Phi n Phi m this dot product you have to use so make use of that we can get those eigenvalues

of the arbitrary constant involved once you know the arbitrary constants you know that is the

final solution this is what we will see in the next video, okay we will continue from here try



to get the eigenvalues and eigenfunctions and we will try to get this T n of x for each discrete

value of n and we try to make the super position and finally apply the initial conditions and

get the arbitrary constants finally  that will  be the solution of your initial  boundary value

problem in the finite domain,  okay finite string if you want to know the vibration of the

string,  if  the  initial  displacement  in  initial  velocity  of  the  string  is  known and  with  the

boundaries are fixed this we can find the displacement of the string for all times, okay from

this solution this is what we will see in the next video, thank you very much.


