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We were looking at an example of periodic Sturm Louisville system, what we have seen is

we, we have seen that operator, we just, we were trying to find the eigenvalues, we found the

eigenvalues and eigen functions corresponding to lambda is positive. So lambda equal to 0

and lambda as negative, that is lambda equal to minus mu square, we have to check whether

they are, they, there may be any eigenvalues in them. Okay, corresponding eigen functions, if

there is any eigenvalue, okay. So we will try to see those 2 other cases. So we start with

lambda equal to 0. 
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If lambda equal to 0 if you do, what is equation, said the equation is y double dash plus

lambda y equal to 0, so basically equation becomes lambda is 0, that is why this is 0. So the

general solution is y of x equal to C1 x plus C2, x is between a to b, okay. Now you apply the

boundary condition bound, that is y at a is equal to y at b. This gives me C1 a plus C2 equal

to C1 b plus C2, C2, C2 cancel, so this will give me C1 has to be 0, because a and b are

different from So C1 has to be 0 if you want this to be same. Okay. So what is your general

solution, then the general solution becomes C2, just a constant. Okay. and now clearly y dash

of a equal to y dash of b, here if you apply for this general solution, this will give me 0 equal

to 0, satisfied, okay. 

So the eigenvalue 0 is, you get what is a solution, so y x equal to constant, that is a nonzero

solution. If I choose my C2 is nonzero, nonzero, that is a solution, that is actually satisfying



the equation when lambda equal to 0 and the boundary conditions, okay for them so we

choose C2 equal to1, so is an eigen function because they have a nonzero solution, eigen

function corresponding to an eigenvalue lambda equal to 0, okay. So this is simply constant,

so which you can see from the earlier case when lambda n is equal to 4n square by pie square

by v minus a the whole square. And when I put n equal to 0, if I include 0 here, lambda is 0,

that is the 2nd case. 

(Refer Slide Time: 3:38) 

 

What happens to the eigen functions? When I put n equal to 0, this becomes 0, this is 0. and

what about you, cos 2n pie by Vminus a into x, when n equal to 0, this is simply one. So I

already have eigen functions. So I can include this lambda equal to 0 case into the earlier case

by including n equal to 0. So I can make now n is from 0, 1, 2, 3 onwards, I have these are



eigen  functions,  corresponding  eigen  functions,  eigenvalues.  These  are  eigenvalues  and

corresponding eigen functions are sin and cosine. but the only thing is n is equal to 0, lambda

is 0, lambda 0 is 0 but eigen functions are not 2 but they are only 1, that is because sin of 0,

sin n equal to 0, it becomes sin 0 is 0. So this function is 0 function. 

We are looking for only nonzero solution, so eigen function should be nonzero, so that is

only, that is when we put n equal to 0 into the cosine function, this becomes one, so I already

have here. Okay. I can include this case into that. now we have to see what happens to this

lambda negative, okay, that is minus mu square which is the negatives, okay. So this is the

case, if you see the general equation is given differential equation is lambda square minus mu

square y equal to 0. So its general solution, again if you look for general solution, K square

minus mu square equal to 0, K equal to plus minus mu, so you have C1, e power mu x plus

C2 e power minus mu x. 
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So this  is  negative,  mu is  always positive,  okay. So that  is  how it  is.  So you apply  the

boundary condition, y at a is equal to y at b, if you apply, so you get C1 e power mu a plus C2

e power minus mu a equal to C1 e power mu b plus C2 e power minus mu b. So what you get

the equation is C1, this minus this, so you get e power mu a minus e power mu b plus C2

Times a power minus mu a minus e power minus mu be equal to 0. Okay. So this equation

number-one, if you apply other boundary condition, other periodic boundary condition, what

you get is mu into C1 e power mu a minus C2 into e power minus mu a, that is what if you

differentiate and put x equal to a, which is same as mu times C1 e power mu b minus C2 e

power minus mu b. 

So mu, mu you can cancel because mu is positive, so nonzero and you get C1 e power mu a

minus e power mu b and you have minus C2 e power minus mu a and this when you bring it

to this side, it becomes plus and you have finally minus, so minus minus plus, minus mu b

equal to 0, so this is equation number 2. If you actually see this, if you substitute, so if you

want to have a nonzero solution, okay, this 1 and 2 you rewrite, 1 and 2 actually gives me a

system, actually if you are putting as a system, we have a matrix e power mu a minus e power

mu b, e power minus mu a minus e power minus mu b, similarly here, e power mu a minus e

power mu b, minus e power minus mu a minus e power minus mu b, C1, C2 equal to 0, 0. 
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So you want  to  get  a nonzero solution here.  To get  C1, C2 nonzero solution,  okay, this

determinant has to be 0, that is the determinant of a power mu a minus mu b, e power mu a

minus e power mu b, e power minus mu way minus e power minus mu b, this determinant,

minus e power minus mu a, this has to be 0. Okay. because it is like a x equal to 0, to get a

nonzero solution if you are looking for, the determinant of a has to be 0. So this is if you, the

determinant means e power mu a minus e power mu b, take it out, similarly e power minus

mu a minus e power minus mu b you can take it out from the 2nd column, so what you get is

1, 1, 1, -1 which is nothing but, this is simply, this is nonzero and this is nonzero, then what

you have the determinant is simply the power mu a minus e power minus mu b, e power

minus mu a minus e power minus mu b. 

This is simply -1 -1, that is going to be -2, so modulus is -2, so -2. This is never be 0 for

every mu positive, you can easily see. for every mu positive and a is not equal to b, this

quantity is nonzero and this quantity is nonzero, so 2 is nonzero, so it is never be 0 for any

mu value. So you do not have, this determinant is never be 0, okay. This determinant cannot

be  0,  this  determinant  is  actually  nonzero  since,  okay,  since,  since  this  is  actually,  the

determinant is this nonzero. So we see that, that means you do not have, mu, if there is no

nonzero solution, that means C1, C2 has to be 0. 
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Is C1, C2, both are 0, that means y of x is the 0 solution. So completely 0 solution you will

get in this case, that implies this mu equal to, this lambda equal to minus mu square for any

mu positive is not an eigenvalue. Okay. Implies no eigen function. So what you have finally,

all the 3 cases lambda positive, lambda equal to 0, lambda equal to minus mu square, you

have eigenvalues are eigen functions, okay. So you can now put it together, all the eigen

functions were eigenvalues eigenvalues 1st of all. I have only lambda n which is for square n

square pie square by b minus a whole square. now for n is equal to 0, 1, 2, 3, onwards, okay,

eigen functions of, you can call them bn of x and which are cos 2 n pie by b minus a into x

and U n of x which are sin 2n pie by b minus a into x. again n is running from 0, 1, 2, 3

onwards. Okay. 



So these are your eigenvalues and eigen functions, they are orthogonal, okay. and they are

actually form complete orthogonal set,  complete means I can write any square integrable

function or any piecewise continuous function, okay. any piecewise continuous function, a

piecewise  continuous  function  this  is  actually  a  theorem,  so  which  you  will  know, any

piecewise continuous function fx, we will take is fx, x is between a to b, okay. Any piecewise

continuous function, so you can have from a to b you can have some pieces, this kind of

function,  okay. So any finite  domain,  that  means outside if  you want  to  see,  it  is  like a

repeated everywhere like this. 

So piecewise continuous function, that means you should have a jump discontinuity, it is not

continuous but it should not be, it should not have, it is ready, to not go to infinity, okay, at

these values, it should be jump discontinuity, this limited exist, it should be finite, okay. As

you when you go from this side to this side, the value of the function should be finite. Okay.

Similarly here, so you should have here and here, that means at this point if you take the

limits  from this  side to the site,  the value should be finite.  Such a  piecewise continuous

function I can write as in terms of, as a linear combination of this. 
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I have now running from 0 to infinity, what I have, what are the eigen functions? I have an,

arbitrary constants with these eigen functions cos 2n pie by b minus a into x plus bn, another

set of arbitrary constants corresponding to with this, for this sin 2n pie by b minus a into x. So

this I can write fx in terms of this eigen function and this eigen functions, coefficients are

simply  arbitrary  constants,  okay, where  ans,  bns  are  arbitrary  constants,  okay, there  are

constants. How to find these constants? These constants you know, you have not product, you



can make the dot product fx with cosine with the bns, okay, 2n pie by b minus a into x, this

you integrate, take the dot product left-hand side, that will give me here a to b, an, okay cos

square 2n pie, so 2n pie by b minus a into x. 

You actually multiply with 2n, so let us use 2n, okay. So that you have, what you have is, you

multiply cos 2n pie, 2n pie cos 2n pie cos square. So corresponding to n equal to m, that will

be together cos square 2n pie by ba, b minus a. Other things will be cos 2n pie by b minus a

into x into cos 2n pie by b minus a into x. That integration, the dot product is 0 because n is

not equal to m, only n equal to m, that is cos square 2n pie by b minus a into x into an, this is

what you get. So and if you do for sin, you get the same thing. So you do cosine or sin, you

get the similar thing. 

So you get sin here, instead of cos you get here bn instead of an. Okay. So this is running

from, including m is, m is running from 0, 1, 2, 3, onwards, okay. Of course b0 is 0, a 0 only

will contribute. a0 will be nonzero, okay. What is the reason? Because m equal to 0 sin square

that is 0, 0 into, that is 0, right, 0 divided by, here also seen 0, 0 by 0, that is actually, what

you have is bn is anyways 0, bn into 0, whatever, bn maybe arbitrary, arbitrary constant. So

we can always write, I am simply writing corresponding to n equal to 0 to infinity for cosines,

sines from 1 to infinity and that 0 part you can write like the 0 into 0 so, it does not matter, so

b0 is arbitrary, it is anyways 0. 
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So you can have this kind of expression, okay. So to write it separately, so a to b fx sin 2n pie

by b minus a into x equal to bn, a2 b, so you have now sin square, sin square 2n pie by b



minus a into x dx. So you should not forget this dx. So this is, this is what you get for n is

running  from.  So this  will  give  me  those  fourier  coefficients  an  equal  to,  you can  now

calculate this integral, these integrals you can calculate, that is one plus cos 4n pie by b minus

a into x, okay by 2, right. This sin, once you put sin that will become 0 again, like earlier we

have seen cosine at a minus cosine at b, that is 0. Okay. 

Cosine at b 4n pie by b minus a into b minus cos for n pie by b minus a that is 0. So this will

not contribute, finally what you get is an is 1 divided by, what you get is here, so this integral

value is 1 by 2 integral a to b, so that is b minus a by2. So what you get is, if you bring it to

the other side, an will be 2 divided by b minus a, this integral a to b fx cosine 2n pie by b

minus a into x dx, this is known, okay. and similarly you get bn as, again you get the same

thing, instead of plus you have a minus, that is 2 sin square, right. So this is again, so this will

not contribute when you evaluate and so what you get is the same, so you get 2 divided by b

minus a integral a to b fx sin sin 2n pie by b minus a into x dx. So these are your fourier

coefficients. 

Given a signal, time signal fx, you can have these frequencies, discrete frequencies, okay

with these amplitudes and you, and you can combine it. So these are actually your fourier

transforms, fourier transforms. Given a time signal fx you can have these fourier transform

coefficients  and then  to  get  back your  signal  using  these  frequencies,  using  the  discrete

frequencies, you combine is a fourier series, this is what is the fourier series. from the fourier

series you can get back your signal based on discrete frequencies. Combine all the discrete

frequencies, you can get back your fourier series. Okay. 
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So this is why, this is what you have seen. So now you can use anything, so what you might

see is a is 0, b equal to 2 pie is a regular fourier series, what you see in the text books, okay.

0, sometimes some, others may write minus pie, b equal to pie, these are this, okay. but taking

this,  what you get is regular fourier series, fourier series of time period 2 pie. Otherwise

general fourier series between, with the period b minus a you can have this fourier series,

okay general fourier series. So this is how regular periodic Sturm Louisville system will give

you your fourier series, regular fourier series which you study in the engineering. 

So what we have seen is a regular Sturm Louisville system also gives you some kind of

fourier series and this periodic Sturm Louisville system is actually giving the series, fourier

series  which  you studied  in  your  engineering.  Okay. So what  you actually  study is  this

periodic system, periodic system Sturm Louisville system that gives the fourier series. now

let us see the 3rd case, singular Sturm Louisville system, okay. I will give you an example of

singular Sturm Louisville system that from which,  for which if  you find eigenvalues and

again functions you can get a fourier series there as well. 
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So there I  will  try to  see the example in  the 3 rd type,  singular  Sturm Louisville  system,

example of singular Sturm Louisville system. I do not really do something new here,  so

which  already  know. I  will  just  give  you  an  example  of,  2  examples  of  2  differential

equations,  examples  of  2  differential  equations  which  you  have  already  studied.  One  is

Legendre equation, other one is Bessels equation, that is what we study here in the, we will

give an example here for the singular Sturm Louisville system. So let us take this Legendre

equation, Legendre equation, what is the Legendre equation? 

If you remember 1 minus x square y double dash -2 xy dash plus alpha into alpha Plus1 into y

equal to 0. So this is what is our Legendre equation, right. So this is equation, it is defined

between minus1 to1. and you see you can rewrite this, put it like Ly equal to lambda y, like

self adjoint form or skew symmetric form, where L is skew symmetric, if you put it in this

form, what is my L, L equal to is actually 1, 1 by minus, 1 is, 1 by W is 1, so what you have

is P is 1 minus x square d dx of, okay and d dx of this whole thing. So you have ddx of 1

minus x square into ddx. Okay. 

and Q is 0, Q is 0 so you have, there is no Q here, this is your L, what is lambda, lambda is

simply alpha into alpha Plus1. Okay. So because what is P, that means Px is 1 minus x square

which is  actually 0,  0 at  x equal to1 or minus1. That  means it  is  a singular self  adjoint

equation, singular Sturm Louisville type of equation. So boundary conditions should be, what

are the boundary conditions to prescribe what are the boundary conditions to prescribe in this

self adjoint, singular Sturm Louisville system? When both P of a, P of a is P at 1 and P



minus1, both are 0, boundary conditions should be y of x, rather y at a, here y is 1, y at 1, y

dash at 1 are bounded. 
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They are finite, similarly y at minus1 and y dash at minus1 are finite. So actually minus1 is a

smaller one, so a is this, b is simply one. So these are the finite bounded R finite. So these are

the boundary conditions.  So you have already studied,  when do you have your  bounded

solutions,  you have,  it  has a solution Pn of  x,  these are  the bounded solutions,  bounded

solutions  for  the  Legendre  equations.  All  other  solutions  are  series  solutions  which  are

unbounded plus minus1. So the bounded, only bounded solutions are Pn of x. That means

lambda is equal to, when lambda is n into m Plus1, okay, I have a corresponding solution Pn

of x which is nonzero. Okay. 

These are the eigenvalues corresponding to this lambda I have a nonzero solution Pn of x

which is satisfying the boundary conditions. Okay. So you call this Vn of x as Pn of x and this

you call as lambda n. So these are eigenvalues and these are corresponding eigen functions.

They that  into check,  okay, lambda is  positive,  negative,  equal  to  0,  all  those things are

already  checked,  verified,  what  are  the  solutions,  okay.  So  your  eigenvalues  and  again

functions are these in this case, okay. 

Immediately implies, what is the dot product, so you can see the dot product, so there is no W

is 1, so the dot product is, you can, you can also write the dot product fg is actually integral

minus1 to1 because determinant is from minus1 to1 fx gx bar dx. Okay. So, so for the sake of

completeness you can write lambda n or n into n Plus1 eigenvalues, corresponding eigen



functions are Vn of x which are Pn of x eigen functions, corresponding to n is from 0, 1, 2, 3

and so on. Okay. 

but n is from 0, 1, 2, 3 onwards, you have this P0, P1, P2, and so on. What happens if I take

Pn equal to -1? If n equal to minus1, I have still P minus1 of x, this is also polynomial, okay.

What is this actually, this is actually you have shown that it is actually minus1 power 1, okay,

minus1 power minus1 into P1 of x. you have seen P n of P minus n of x equal to minus1

power n into Pn of x. Using this  relation which we proved earlier, so we can say that P

minus1 and P1, they are actually linearly dependent. So corresponding to this you have same

solution. 

So if we think that this is your eigenvalue, okay, if n is, corresponding to n equal to minus1,

so what is that eigenvalue, you will lambda minus1 which is equal to minus1 into 0. So this is

actually lambda 0 which you already have here, okay. If you take lambda equal to -2, okay,

lambda equal to -2, so if you write lambda equal to -2, so if you think that lambda -2 is also

an eigenvalue,  lambda -2,  because you have p -2, okay, P -2 is  P2, so which is nonzero

solution. I have eigen functions but I want to see whether this lambda mod is lambda -2. 

Lambda -2 is -2 into minus 2 +1 into 1, minus1. This is nothing but simply 2, right. -2 into -2

Plus1, so this is simply -2, so this is 2. 2 is corresponding to lambda equal to1, so lambda 1.

So lambda 1 is already here corresponding to n equal to1, okay. Lambda 1 is also 2, so like

this all lambda minus ns, they are already here, they are same, same eigenvalue, okay. So let

us not bother about this lambda is negative, negative natural number. If lambda is minus n,

okay, if we choose n equal to negative values, negative integers, you, the eigenvalues are

already here, you do not have to, they are not, they are not different from these eigenvalues,

that is what I mean to say, okay. 
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So you can say as a note, if, since lambda ns, lambda minus ns or 0, 1, 2, 3, there actually 00,

lambda 1 lambda 1, lambda 2 and so on. for n is from 0, 1, 2, 3, onwards. Okay. Lambda

minus n for, if you choose lambda minus n, n is from 1, 2, 3 onwards, okay, you can rewrite.

So lambda n where n is from 1, 2, 3, so if you consider this, nothing but lambda 0, lambda 1,

lambda 2 and so on, these are here. So you can say note, if lambda n is this, for lambda ns,

these are, I should properly I should write for n, for n is equal to 1, 2, 3 onwards, lambda

minus n are in one of these eigenvalues. 

So we need not consider negative discrete numbers, so negative integers. So you have these

ones, so once you have this, if you use the properties of these eigen functions, self adjoint

operator or skew symmetric operator, any skew symmetric, any, any piecewise continuous



function, piecewise continuous function fx, I can write x is between minus1 to1, I can write

in terms of Cn Pn of x, n is from 0 to infinity, that is what we have. So where Cn is, how do I

find my Cn, you take the dot product with fx. With P n equal to you get Cn times Pn Pn, all

other things will be 0, okay. So that means Cn is, you can rewrite, so you can write integral

minus1 to1 fx Pn of x, these are all real valued, so there is no bother, does not matter. 

So divided by minus1 to1 Pn square of x dx. you know the value of this, this is actually 2

divided by 2n Plus1, so you have 2n Plus1 by 2, okay. So this value is 2 divided by 2n Plus1,

okay. So P0 is 1, P0 is 1, 1 is simply, one is 2, right, so 2 divided by 2n Plus1 is the integral of

minus1 to1 dx is equal to 2, okay. One Plus1, so 2, so 2 divided by, this is actually 2 divided

by 2 into 0 Plus1. So 2, so this value is 2 divided by 2n Plus1. So which we know. So this is

equal to 2n Plus1 divided by 2 integral minus1 to1 fx into Pn of x dx. This is my Cn. 

So I have a fourier series bessel, this is called Legendre fourier series. and these are fourier

Legendre  fourier  transform  you  can  say,  these  are  fourier  transforms,  Legendre  fourier

transform. So given a time signal I can split, I can make it discrete frequencies with these

functions P on and get the discretes call, discrete means 0, 1, 2, 3, onwards, okay. So I can

have these frequencies and I can combine with these functions, instead of sines and cosine I

can have these Legendre functions, I can combine them discreetly. 

I can combine is the discrete sum, with these discrete frequencies I can combine them as a

linear combination, I can get back my signal fx, this is what is fourier series is all about. So

you can have this  Legendre fourier  series,  if  you consider  this  singular  Sturm Louisville

system, okay. So why I choose your piecewise continuous function. So if I do this, any fx I

can write in terms of this. So that means this sum is converging to fx, you fix any value x,

that is, that is point wise convergence, that is called quite wise convergence. 
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That means the series, you fix x, the convergence is to corresponding fx, okay. This has a

series of numbers once you fix x, the series converges to Sx at that point x, okay. Once you

fix x, this is point wise convergence. but there is a, but in all the 3 cases, if f of x is that

means regular Sturm Louisville system or periodic Sturm Louisville system, all these singular

Sturm Louisville systems, if fx is a square integrable function, square integrable function,

then, then this fx, still I can write this fx as sum, n is from 0 to infinity. So for example, just

for the sake of example I can do in this case Legendre fourier series, I can write this Pn of x

where Cns are same here, okay. 

Cns are same but the convergence here is not point wise, not point wise convergence. That

means this convergence means I take n is from 1 to n, Cn Pn of x, okay minus fx, okay, you

director minus1 to1, okay. This square dx equal to 0, when you take this limit, limit m goes

to,  this limit  goes to 0. That means as in the square integrable sense, on an average this

converges to fx, okay, that is this, okay. So this convergence is different, so if it is not quite

wise convergence but  it  is  a square integrable convergence,  it  is  called square integrable

convergence, then this means, this is same as this means not you fix your x and then see that

this number series converges to the particular value, okay. 

It is actually is this meaning of this one, so this, this you need not worry, so, that is why you

learn only piecewise continuous functions, you can have this fourier series, it is point wise

convergence, okay, but square integrable, square integrable convergence, that is this one, this

is  the meaning of  square integrable convergence.  This  is  true even in  the regular  Sturm

Louisville system or periodic Sturm Louisville system which I missed to explain last time,



okay. So if you take square integrable function fx, then still this fourier series converges to

that f but in the square integrable convergence, okay. 

but if you take piecewise continuous function fx, this convergence, this series is converging

to fx point wise, okay. We have studied bessel, bessel equation, okay, earlier. So we can give

operator  as  a  bessel  equation operator  and we can have an operator  of a singular  Sturm

Louisville  system,  another  example,  that  is  bessel  equation,  bessell  Sturm,  bessel  Sturm

Louisville system. So the operator L is the bessel type, so that we will see that example in the,

so we can give one more, one more singular Sturm Louisville system with certain boundary

conditions, okay. So we will see that in the next video, thank you very much for watching

this. 

 


