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So let us do Noether Normalization. This is one result in commutative algebra which is 

quite important in the geometric point of view as well; let me just try to explain the 

vaguely explain the geometric situation. So, suppose here you have a even algebraic set 

in K n K is a field. So, we call this a fine space you must have already done the exercises 

in a Atiyah McDonald that finds the K n with Zariski topology is usually denoted by A 

and k and this is called a fine space. So, if you have an algebraic if you have a subset X 

of k n then I can define this ideal I of x set to be set of all f x 1 up to x n in K x 1 up to x 

n, such that f of a 1 up to a n is 0 for all a 1 up to a n in x; then this is an ideal in K x 1 up 

to x n; the ring A x usually denoted by A x, K x 1 up to x n modulo I of x is called the 

coordinate ring of the algebraic set X. 

So, the idea of the Noether normalization is the following. 
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Suppose you have an algebraic set X in some in some A n k; the question is whether we 

can we do have a projection onto A r k. 

So, suppose I have a projection like this suppose I have a map between; I mean suppose I 

have a surjective map like this, then I have an injection from. So, I have an injection 

from K let us say some z 1 up to z r to the coordinate ring A of X. So, this is injective 

map; what does this if I have a projection like this then I have a map like this. What and 

what we are looking for in geometry what one looks for is can we have a projection like 

this. So, that this becomes a finite extension, A x become a finite extension of this 

polynomial ring, once you have this is a polynomial ring and this is a finite extension. 
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Z 1 up to z r. So, if I have a map from X to A r A k r then correspondingly I have. So, 

this will be the coordinate ring of this, because you have only the 0 polynomial that. So, 

if I have a map from X from you know K x 1 sorry; A n k to Y in A m k if I have a 

Morphism like this what I mean there is something called Morphism, then 

correspondingly I have a map between the coordinate rings of Y and X; that is what we 

have here, this is the coordinate ring of this variety because there is only 0 polynomial 

that vanishes at all points of this. So, this is polynomial ring modulo the 0 ideal. 



So, the question here is whether we can have such a projection so that this becomes a 

finite extension it. So, turns out that it need not always be the , we need not always have 

such a projection giving something like this always for example, if you take. So, let us 

take K equal to R, X equal to the 0 set of all x 1 x 2. So, that x 1, x 2 is 1 its basically the 

this set. 
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Now, if I look at this, this as my r equal to 1, if I take the projection I will miss the point 

0. Accordingly if I look at correspondingly if I have C x 1 I have C x 1 to not c does not 

(Refer Time: 08:06) R x 1, x 2, x 1 x 2 minus 1; this is the coordinate ring of this variety, 

I have this map. Now this is I do not have see if I look at the ideal generated by x 1 here 

this is a prime ideal here there is no prime ideal here that is lying over x 1. So, therefore, 

this does not become a finite extension. Now we do a small trick here everything remains 

the same, I do a twist here I just change my axis instead of the standard axis I change my 

axis to take y 1 equal to x 1 plus x 2, and y 2 equal to x 1 minus x 2. 

So, when I make this transformation, the act the variety becomes like this. So, what we 

are doing is we are just twisting 45 degrees right this becomes the axis becomes this 

these 2 lines sorry. So, I denote no, is this correct. 
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 At 1 not 0; so, this is like this at 1 it comes twisted by 45 degrees, because what happens 

when what is x 1? X 1 is y 1 plus y 2 by 2 and x 2 is y 1 minus y 2 by 2. So, the axis this 

is this line and the other one is this line. So, it is basically 45 degree. 

So, you become and the variety becomes this, there is no change as such for the variety 

only thing is we are looking at in a different angle. Once we twist this, now what 

happens to the variety now? So, we are now in R y 1 y 2 and what is. So, let us call this 

to be the new variety to be A of Y, A of Y the coordinate ring of A of Y becomes this 

becomes Y 1 Y 2. So, if I take x 1 x 2 to be x 1 x 2 the product right, this becomes. 
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Y 1 square minus y 2 square. 

Student: Minus (Refer Time: 12:09). 

Four now this, this is see y 1 square. So, if I can take let us say I can send R y 1, now y 1 

y 2 is integral over this ring, y 2 is integral over this ring not this, this one right because 

it satisfies the polynomial t square minus. 

Student: Y 1 square. 

Y 1 square minus 4, y 1 bar square minus 4. So, over this ring also y 2 is integral. So, 

what we are have is, this is a finite extension now because it is generated by y 1 y 2 I 

mean this becomes a finite extension because it is generated by y 1 y 2 sorry 1 y 2 and y 

1 y 2, after that you can create y 2 square is y 1 square minus 4. 

So, this gives me a method of getting into getting a finitely I mean finitely generated k 

algebra as a finite module over polynomial ring. Now this number that appears here or 

the number that that appears here this is called dimension of the variety, it is I mean not 

defined by this way, but it turns out to be that this becomes what is called dimension of a 

given variety. 
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So the idea is this, let us try to prove this. So, first let me make the statement let R be 

finitely generated K algebra, then there exists variables Z 1 Z 2 up to Z r such that K 

sorry with an injective homomorphism from K Z 1 up to Z r to r such that. So, let me call 

this S, R is a finitely generated S module maybe I which makes. So, here I will do the 

proof assuming that the field is infinite, when the proof is or when the field is finite the 

proof is slightly more complicated and I will leave it you to read it on your own. It is not 

very different or too difficult, but it is slightly more linking uses some more intricate 

arguments; I will leave it you to learn it yourself. The proof for theorem when the field is 

infinite is not very difficult aspect. 

So, there are only I mean very few changes that are required for the proof to be valid in 

the case of finite fields, but that lemma 1 needs to be careful in proving. So, let us a 

theorem for the case of a infinite fields. So, first let R be and it is a finitely generated K 

algebra. So, I can write R as some x 1 up to x n, we prove the theorem by induction on N 

if n is 0 r s k we can take r small r to be 0 itself, everything works then take r to be 0 

itself that works. 

Now, suppose n is positive, now let us assume by induction that if I have a finitely 

generated K algebra, generated by less than or equal to n minus 1 elements then I can 

find some Z 1 up to Z r. So, that this becomes inclusion and R becomes a finitely 

generated S module. 
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So, let us write down the induction hypothesis; if R is a finitely generated K algebra 

generated by n minus 1 at most n minus 1 elements, then there exists Z 1 up to Z let us 

write r prime, such that there exists variables K Z 1 up to Z R prime to R is injective, and 

r is. So, call this s prime is a finitely generated S prime module. 

Now, the idea is to prove by induction. So, the idea is to bring it down to the case of n 

minus 1, case of a finitely generated K algebra having n minus 1 generator. So, let us 

look at the situation, we have now let R be equal to K x 1 up to x n. See if all these x 1 

up to x n they are all algebraically independent, then we can take n to be R itself that is 

there are no polynomial f that vanishes on all the I mean no polynomial f such that f of x 

1 up to x n is 0, they themselves are variables if x 1 up to x n all of them are variables 

then we do not really have to worry and we can just take n to be r itself. 

So, for any f let us say polynomials in K X 1 up to X n, f of x 1 up to x n is nonzero for 

any nonzero polynomial, then take n e r equal to n and Z i equal to x i we are through I 

mean this itself is a polynomial ring. There are no polynomial relations among x 1 up to 

x n, which means this itself is a polynomial ring they are all algebraically independent. 

See here there is a relation between y 1 and y 2 right that is y 1 square minus y 2 square 

minus 4 is 0 in on this ring. 

So, this I can write this as R y 1 bar y 2 bar, but in this one y 1 alone does not have a 

relation, but y 2 has y 1, y 2 satisfies a relation; what is that? Y 1 square minus y 2 



square is 4. So therefore, this is I mean these 2 are not algebraically independent, if I take 

the polynomial x 1 square minus x 2 square minus 4, and put y 1 equal to x 1 I mean x 1 

equal to y 1 bar and y 2 equal to x 2 bar this becomes 0. 

If we do not have any such situation that you know x 1 and x 2 are no way related, not 

only linear relation no order relation no higher order relation; that is there are no 

polynomials satisfying x 1 up to x n, then you can take I mean then the what that says is 

that all of them are variables they are all algebraically independent. So, they are I can 

take z n r to be n and each j I to be x i. So, in this case we are through. So, suppose there 

exists f X 1 up to X n nonzero polynomial, such that f of X 1 up to X n is 0; suppose this 

is 0. 
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Now, see as in the case of this example that we discussed can we you know the idea is 

again, the idea is to bring this down to a case like this, I have R I want to bring it down to 

a situation like this x 1 up to x n minus 1. Where this is finite, once you have this 

situation then by induction I can say that I have a K z 1 up to z r, polynomial ring K z 1 

up to z r such that this is finite. 

Now, if this is finite and this is finite, this is a finite module over this ring and this is a 

finite module over this ring then R is a finite module over this ring we are through, but 

then we need to make sure that I can have a finite integral extension like this. 
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But then, as we saw in the earlier case for example, in the case of R x 1 x 2 modulo x 1 

sorry x 1 x 2 minus 1, in this case neither x 1 nor x 2 is integral or . See if I look at the 

ring R x 1 , then x 2 bar is not. So, let me call this R x 1 bar x 2 bar, then this is not 

integral x 2 bar is not integral over this because you are the polynomial that you are 

considering is not Monique right this is not Monique polynomial. So, this extension is 

not integral if this is integral if you take this if this is integral, then given any ideal prime 

ideal here I will have a prime ideal here containing the given prime ideal. But if I look at 

this is a prime ideal here right, but then I do not have a prime ideal here containing x 1 

bar, if it contains x 1 bar it will become the whole ring. So, there are no prime ideals here 

which contain this one. 

Therefore, this is not an integral extension. So, if I simply take some variables that might 

not work. So, we you know what we did here was we twisted the axis. Similarly we can 

try to twist the axis and try to see if we can get an integral extension. So, let us see a let 

us see how we can do this. Now I have a polynomial such that this is 0. So, the question 

is whether we can get we can make a twist so that one of the variable has leading 

coefficient 1. Look at the example that we did we made x 1 equal to y 1 plus y 2 and x 2 

equal to y 1 minus y 2 or the other way, and then when we substitute it one of the 

variables became y 1 became Monique, I mean the leading coefficient of y 1 became 

Monique right. So, over see y 2 it became an integral extension. So, therefore, in this 

case the question is whether we can indeed do this twist. 



(Refer Slide Time: 29:48) 

 

So, let us see how we can do that. Let us write f of x 1 up to x n as a polynomial. So, let 

us let degree of this, let f 1 the le let us write like this f d x 1 up to x n, where f i is the 

homogenous component of degree i. To understand this, the homogeneous component 

means the terms of degree i. So, if I take the x 1 square plus x 1 x 2 cube plus x 2 power 

4, this is degree 4 component, this is f 4, this is f 2. I collect all the terms of same degree 

and write this as f i. 

So, if we have to you know tweak the polynomial and get a Monique polynomial we 

only have to worry about this one right? Once we tweak that the highest degree term and 

make one of the coefficients, one of the leading the coefficients of one of them Monique 

then we can take that polynomial, it if we can make a linear change. So, let me. So, the 

question is where we can deal with this homogeneous polynomial, and make 

corresponding change. 

So, consider the polynomial. So, let us write this as summation C k 1 up to k n, x 1 

power k 1 to x n power k n, summation k I to the equal to d. And I am just representing 

the polynomial they are all of degree d. What happens to this polynomial if I make a 

linear change? For example, suppose let x i be equal to y i plus a i y n. 

Let me just write this as y i times x i equal to y i times a i plus n. Y i is are you know 

again I am just you know say I am taking y i. So, that this is this for some a is you know 

a m a n minus 1 for and x n equal to y n. Let us substitute like this; what do you get f d y 



1 up to y n. So, each one bill will become x 1 will be y 1 plus a 1 y n whole power k 1 

and so on. Suppose I write this as a polynomial in y n with coefficients coming from 

other as a polynomial in y n with coefficients coming from K y 1 up to y n minus 1. 

What would be the highest degree? Highest degree will be K 1 I mean the summation the 

degree is d right. So, the highest degree will be y n power d. 

Now what would be the y n power d plus I would just write the coefficients as I will just 

write this O y n power d minus 1. Something less than or equal to I mean with 

coefficients coming from y 1 k y 1 up to y n, now what would be the leading coefficient 

here? There would be see I am substituting x 1 by this one. So, see from each of them see 

I am writing y 1 plus a 1 y n whole power k 1, y n minus 1 plus a n minus 1 y n whole 

power k n minus 1 y n whole power k n. I am looking at k 1 see the this is one term right 

this is c k 1 up to k n term in each term I will have a 1 power k 1 up to a n minus 1 power 

k n minus 1 times 1 multiplied by y n power k I mean y n power d. 

So, the leading term and this will come from each C1 I mean each term like this. So, the 

leading coefficient will be of the form C k 1 up to k n, a 1 power k 1 a 2 power k 2 up to 

a n minus 1 power k n minus 1 and 1 coming from here. From each term that will be 

there and y n power d will be common to each of them.  

Therefore, this is nothing but. So, let me just write it like this a 1 power k 1 up to a n 

minus 1 power k n minus 1, 1 power k n. I will write it like this will be the coefficient of 

y n power d, but now what is this? This nothing but f d of a 1 to a n minus 1, 1 y n power 

d terms which are less than. So, the question here can be make change, see here I have 

obtained a polynomial such that this is 0, I have obtained the relation whose f is 0. Now 

this is 0 means if I multiply by any lambda, lambda in k this will also be 0. So, if I can 

get a polynomial whose leading coefficient is an element from k I can always scale it. 

So, here I have a an element from k, but now what is that I need to say here, see if I can 

choose a 1 up to a n minus 1, so, that given this homogeneous polynomial I can always 

choose a 1 up to a n minus 1 so that this becomes nonzero. There exists a 1 up to a n 

minus 1 so that this is nonzero. If I can say that then this transformation will give me a 

new polynomial. So, I make this transformation the entire thing and this will be a degree, 

this will have y n power d with some coefficients in k which I can always scale it, and 

some I mean other terms whose degree is as a power of n it will as a polynomial in y n 



they will have smaller degrees, and that will imply that and this if you put f of x 1 up to x 

n again this will become 0, this new polynomial will again become 0, because they are 

all x 1 I mean coming from this itself. So, that will become 0 that will imply that y n is 

integral over k y 1 up to y n minus 1. Now you can apply induction on k y 1 up to y n 

minus 1, get a polynomial ring which injects into y 1 up to y n minus 1; this is integral 

will imply that this is finite, this is by induction this is finite therefore, this is finite that is 

the idea. 

So, the question is whether given a homogeneous polynomial, can we always find some 

a 1 up to a n minus 1 so that this becomes nonzero. See in the case of infinite fields this 

is know at least intuitively you can say that it should be possible, I mean you can. If you 

look at a polynomial and look at its solutions in; I mean n space, that should be a close 

set which is you know. So, we should always be able to pick a point outside the given 

close set, but we have to prove that. But when your field is finite it is much more 

difficult for example, there can exists polynomials which is as a polynomial it is nonzero, 

but you put any value of the field it becomes 0 for example. 

Student: X power. 

X power p power n minus , x power p power n minus 1 minus 1 or x power p minus 1 

minus 1 that becomes that is a nonzero polynomial such that for every a in the in f p this 

is 0 right. 
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So therefore, when the field is finite, its little tricky 1 has to deal it separately. But when 

your field is infinite, what I claim is the following let g x 1 up to x n in. So, let me use a 

different notation g t 1 up to t n in the polynomial ring is be a homogeneous polynomial 

then there exists a 1 up to a n minus 1 in K such that g a 1 up to a n minus 1, 1 is nonzero 

I precisely what we want to prove here. 

So, again we prove this by induction if n is equal to 1, we are through take any nonzero. 

So, this is g is a degree 1 sorry degree some this x power n. So, if n is 1 then g t 1 is 

some alpha t 1 power r for some r, because it is homogeneous polynomial, then take a 1 

to be any nonzero element in k. So, the claim is through if n is 1, now suppose assume 

that I mean assume the induction hypothesis that if I have a homogeneous polynomial of 

degree n minus 1, then it has the nonzero root like this sorry n minus 1 elements we serve 

with is being nonzero. So, let f sorry. So, 1 it is sorry a 1 take a 1 there is no a 1 that is 

true then g of 1 is nonzero, g of 1 is alpha which is nonzero. 

So, let now assume that suppose n is positive, write g t 1 up to t n as summation g i t 1 up 

to t n minus 1 t sorry to t 2 up to t n, t 1 power i, i from 1 to d. So, write this as a 

polynomial in t 1 power I mean polynomial in t 1 with coefficients coming from t 2 up to 

t n. S g is nonzero there exists 1 I such that at least 1 I such that g i is nonzero; g i is a 

nonzero polynomial by induction there exists a 2 up to a n minus 1 in k such that. So, let 

us say g i a 2 up to a n minus 1, 1 is nonzero for this. 
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Of course it will be homogeneous; because this is if I take a term of degree I mean the g 

is homogeneous. So, if I take t 1 power i the rest of the terms each of the terms will have 

you know degree i minus 1, g i will be of degree you know the rest d minus i, degree of g 

i will precisely be d minus i, if I assume degree of this is d. 
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So, for this corresponding i I have g i is nonzero; now what I do is I look at consider the 

polynomial g of t 1 a 2 up to a n minus 1, 1 this is a polynomial nonzero polynomial in K 

t 1 sorry K t 1 because this, this term is nonzero. 

Now, this is a nonzero polynomial here therefore, there exists at least k is infinite there 

exists at least an a 1 in k such that g, a 1 a 2 a n minus 1, 1 is nonzero and that is 

precisely what we want to prove. So, once we obtain this what we have is let us go back. 

I take this f this is 0, now if I substitute x 1 instead of x 1 I just put take this a 1 up to a n 

minus 1 and put x i equal to this equation that will give me this will give me I mean if I 

put x i equal to this, that will give me another say g y 1 up to y n, but g y 1 up to y n will 

again be 0, but then it will have a y n will have a leading coefficient coming from the 

field which I can always scale it; that will say that Y n is integral this says that y n is 

integral over K Y 1 up to Y n minus 1 by induction K there exists Z 1 up to Z r such that 

K z 1 up to z r, this is y 1 up to y n minus 1, this is finite and this is since y n is integral y 

1 up to y n minus 1 this is also finite is finite.  

Now, this is finite this to this is finite therefore, this to this is finite, but what are the 

substitutions that we had made x 1 equal to y 1 plus a 1 y n, x 2 equal to y 2 plus a 2 y n 

and so on up to y n. So therefore, this ring is same as note that k y 1 up to y n is same as 

k x 1 up to x n. So, that finishes the proof. 
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X n is y n; therefore now, x n minus 1 is y n minus 1 plus a n minus 1 y n. So, this is x n 

right. So, x n is here therefore, y n minus 1 is here I mean y n minus 1 is here. So, 

therefore, x 1 minus 1 is here. Now keep going back what you get is this is certainly 

contained here, but this is also contained here, therefore, they are equal. That means, I 

have obtained z 1 up to z r such that this contained in k x 1 up to x n is a finite extension 

that is precisely what the Noether normalization lemma says. 

We will do some applications of Noether Normalization in the next class. 


